
1

Chapter 1

A Tutoring Based Approach to the Development of
Intelligent Agents

Gheorghe Tecuci, Mihai Boicu, Kathryn Wright, Seok Won Lee, Dorin Marcu
and Michael Bowman
Learning Agents Laboratory, Computer Science Department, George Mason University

Key words: intelligent agents, knowledge acquisition, machine learning, planning,
knowledge representation

Abstract: This chapter introduces the concept of intelligent agent, analyses some of the
issues and trends in developing them and presents a specific agent
development approach. The presented approach, called Disciple, relies on
importing ontologies from existing repositories of knowledge, and on teaching
the agent how to perform various tasks, in a way that resembles how an expert
would teach a human apprentice when solving problems in cooperation.

1. INTELLIGENT AGENTS

Significant advances in computer technology and in the various areas of
Artificial Intelligence (such as knowledge representation, problem solving
and planning, learning, natural language processing, and vision) have been
made in the last decade. These advances make feasible the building of
systems that exhibit not just one but several of the characteristics that we
associate with intelligence in human behavior. Such systems, called
intelligent agents, have the ability to perceive their environment, can reason
to interpret perceptions, draw inferences, solve problems, and determine
actions, and can act upon that environment to realize a set of goals or tasks
for which they were designed. An intelligent agent interacts with a human or
some other agents via some kind of agent-communication language. It may
not obey commands blindly, but may have the ability to modify requests, ask

2 Chapter 1

clarification questions, or even refuse to satisfy certain requests. The agent
can accept high-level requests indicating what the user wants and can decide
how to satisfy each request with some degree of independence or autonomy,
exhibiting goal-directed behavior and dynamically choosing which actions to
take, and in what sequence. It can collaborate with its user to improve the
accomplishment of his/her tasks or can carry out such tasks on the user’s
behalf. In so doing, it employs some knowledge or representation of the
user's goals or desires. It can monitor events or procedures for the user, can
advise the user on how to perform a task, can train or teach the user, or can
help different users collaborate.

The behavior of the agent is based on a correspondence between the
external application domain of the agent and an internal model of this
domain consisting of a knowledge base and an inference engine (see Figure
1). The knowledge base contains the data structures representing the entities
from the agent’s application domain such as objects, relations between
objects, classes of objects, laws and actions. The inference engine consists of
the programs that manipulate the data structures in the knowledge base in
order to solve the problems for which the agent was designed.

Figure 1. The overall architecture of an intelligent agent

2. GENERAL ISSUES AND TRENDS IN THE
DEVELOPMENT OF INTELLIGENT AGENTS

Manual acquisition of knowledge from human experts by knowledge
engineers is the most common approach to the process of developing an
intelligent agent, and a knowledge-based system, in general. As illustrated in
Figure 2, a knowledge engineer interacts with a domain expert to understand
how the expert solves problems and what knowledge he or she uses. Then

1. A Tutoring Based Approach to the Development of Intelligent Agents 3

the knowledge engineer chooses the representation of knowledge, builds the
inference engine, elicits knowledge from the expert, conceptualizes it and
represents it in the knowledge base. This knowledge elicitation and
representation process is particularly difficult because the form in which the
expert expresses his or her knowledge is significantly different from how it
should be represented in the knowledge base. Moreover, the expert typically
fails to specify the knowledge that is common sense or implicit in human
communication, but which needs to be explicitly represented in the
knowledge base. After the knowledge is elicited it has to be verified by the
expert with the knowledge engineer making corrections in the knowledge
base. This indirect transfer of knowledge, between the domain expert and the
knowledge base, through the knowledge engineer, leads to a long, painful
and inefficient knowledge base development process.

Figure 2. Overview of manual knowledge acquisition

Some of the issues that have been found to be limiting factors in
developing intelligent agents for a wide range of problems and domains are:
– finding the right balance between using general tools and developing

domain specific modules;
– limited ability to reuse previously developed knowledge;
– the knowledge acquisition bottleneck;
– the knowledge adaptation bottleneck;
– the scalability of the agent building process;
– the portability of the agent building tools and of the developed agents;
– slow development process.

We will briefly address these issues, as well as current research trends in
dealing with them.

When developing an agent, it is important to find a suitable balance
between reusing general modules and building specific modules. Reusing
general modules significantly speeds up the development process. However,
the agent may not be well adapted to its specific application domain and may
not be that useful. On the contrary, building the agent from domain-specific

4 Chapter 1

modules leads to a well-adapted and useful agent, but the development
process is very difficult. Many of existing agent-building tools provide an
inference engine, a representation formalism in which the knowledge base
could be encoded, and mechanisms for acquiring, verifying or revising
knowledge expressed in that formalism. These tools trade power (i.e., the
assistance given to the expert) against generality (i.e., their domain of
applicability), covering a large spectrum. At the power end of the spectrum
there are tools customized to a problem-solving method and a particular
domain (Musen and Tu, 1993). At the generality end are the tools applicable
to a wide range of tasks or domains, such as CLIPS (Giarratano and Riley,
1994). In between are tools that are method-specific and domain independent
(Chandrasekaran and Johnson, 1993).

All the existing agent building tools exploit, to a certain degree, the
architectural separation between the general inference engine and the
application-specific knowledge base, with the goal of reusing the inference
engine for a new agent. Existing knowledge bases are very rarely reused,
primarily for two reasons. First, the knowledge in the knowledge base is
usually very specific to a particular domain and problem, and cannot be
applied directly to a different application area. Second, even if the
knowledge base of an agent is directly relevant to the new area, reuse of it by
a different agent that uses a different knowledge representation, is likely to
be very difficult because of the differences between the knowledge models
of the two agents. This situation, however, is currently changing. First, we
are witnessing a new architectural separation at the level of the knowledge
base. The knowledge base is increasingly regarded as consisting of two main
components: an ontology that defines the concepts of the application
domain, and a set of problem solving rules expressed in terms of these
concepts. While an ontology is characteristic to a certain domain (such as an
ontology of military units, or an ontology of military equipment), the rules
are much more specific, corresponding to a certain type of application in that
domain. For example, there may be rules for an agent that assists a
commander in critiquing courses of action, or rules for an agent that assists
in planning the repair of damaged bridges or roads. This emergence of
domain ontologies is primarily a result of terminological standardization to
facilitate automatic processing of information, particularly information
retrieval. Some examples of domain or general purpose ontologies are
UMLS (UMLS 1998), CYC (Lenat 1995), and WordNet (Fellbaum 1998).
The availability of domain ontologies raises the prospects of sharing and
reusing them when building a new agent. Recently, the Open Knowledge
Base Connectivity (OKBC) protocol has been defined to facilitate
knowledge sharing and reuse (Chaudhri et al. 1998). OKBC is a standard for
accessing knowledge bases stored in different frame representation systems.

1. A Tutoring Based Approach to the Development of Intelligent Agents 5

It provides a set of operations for a generic interface to such systems. There
is also an ongoing effort of developing OKBC servers for various systems,
such as Ontolingua (Farquhar et al. 1996) and Loom (MacGregor 1991).
These servers are becoming repositories of reusable ontologies and domain
theories, and can be accessed using the OKBC protocol.

There are two very difficult problems in developing an intelligent agent:
the encoding of knowledge in the knowledge base (known as “the
knowledge acquisition bottleneck”), and the modification of this knowledge
in response to changes in the application domain or in the requirements of
the agent (“the knowledge maintenance bottleneck”). A promising approach
to both of these problems is to develop a learning agent that is able to
acquire and maintain its knowledge by itself. In addition to the knowledge
base and the inference engine, the architecture of a learning agent includes a
learning engine consisting of the programs that create and update the data
structures in the knowledge base. The learning agent could learn from a
variety of information sources in the environment. It may learn from its user
or from other agents, either by being directly instructed by them or just by
observing and imitating their behavior. It may learn from a repository of
information (such as a data base) or it may learn from its own experience.
Building a practical autonomous learning agent that can acquire and update
its knowledge by itself is not yet practical; we do not yet understand enough
about the cognitive process of learning. Therefore, a more practical approach
is to develop an interactive learning agent that can interact with an expert.
Such an agent can perform most of the functions of the knowledge engineer.
It allows the expert to communicate expertise in a way familiar to him/her
and is responsible for building, updating and reorganizing the knowledge
base.

Obviously, the usefulness and generality of the intelligent agents and of
the agent building tools are significantly enhanced if they are portable.
Therefore, a current trend in developing them is the use of Common Lisp
(for the core functionality) and of JAVA (for the interface).

Finally, as the history of Artificial Intelligence makes clear, the fact that
one approach worked in the development of a small scale agent is in no way
a guarantee that it will also work for building agents for complex, real-world
applications. Therefore, the scalability of the agent building process is an
important aspect of any agent building methodology and tool.

6 Chapter 1

3. THE DISCIPLE APPROACH FOR DEVELOPING
INTELLIGENT AGENTS AND AN EXEMPLARY
AGENT

Disciple is an apprenticeship, multistrategy learning approach for
developing intelligent agents, which addresses the design issues discussed in
the previous section. In the Disciple approach, an expert teaches the agent
how to perform domain-specific tasks in a way that resembles how the
expert would teach an apprentice, by giving the agent examples and
explanations as well as by supervising and correcting its behavior (Tecuci,
1998; Tecuci et al., 1999). This approach integrates many machine learning
and knowledge acquisition techniques (such as inductive learning from
examples, explanation-based learning, learning by analogy, learning by
experimentation) taking advantage of their complementary strengths to
compensate for their weaknesses (Michalski and Tecuci, 1994; Tecuci and
Kodratoff, 1995). As a consequence, the Disciple approach significantly
reduces the involvement of the knowledge engineer in the process of
building an intelligent agent. The current version of the Disciple approach is
implemented in the Disciple Learning Agent Shell (Disciple-LAS). A
learning agent shell consists of a learning and knowledge acquisition engine
as well as an inference engine and supports building an agent with a
knowledge base consisting of an ontology and a set of problem solving rules.

With respect to the Disciple-LAS shell and methodology we have
formulated the following three claims:
– they enable rapid acquisition of relevant problem solving knowledge

from subject matter experts, with limited assistance from knowledge
engineers;

– the acquired problem solving knowledge is of a good enough quality to
assure a high degree of correctness of the solutions generated by the
agent;

– the acquired problem solving knowledge assures a high performance of
the problem solver.
In the rest of this chapter we will present the Disciple agent building

approach using, as an example, the process of building an agent for solving
the workaround challenge problem. We will first define the workaround
challenge problem. Then we will introduce Disciple based modeling of an
application domain. Next we will present the architecture of the Disciple-
LAS and the agent building methodology. Finally, we will present
experimental results from building the specified agent and summarize our
conclusions.

This workaround problem consists of assessing how rapidly and by what
method a military unit can reconstitute or bypass damage to an

1. A Tutoring Based Approach to the Development of Intelligent Agents 7

infrastructure, such as a damaged bridge (Alphatech 1998; Cohen et al.
1998).

The input to the agent includes three elements:
– a description of the military unit that needs to work around some damage

(e.g. an armored tank brigade or a supply company),
– a description of the damage (e.g. a span of the bridge is dropped and the

area is mined), and of the terrain (e.g. the soil type, the slopes of the river
banks, the river's speed, depth and width),

– a detailed description of the resources in the area that could be used to
repair the damage. This includes a description of the engineering assets
of the military unit that has to work around the damage, as well as the
descriptions of other military units in the area that could provide
additional resources.
The output of the agent consists of the most likely repair strategies, each

described in terms of three elements:
– a reconstitution schedule, giving the transportation capacity of the

damaged link (bridge, road or tunnel), as a function of time, including
both a minimum time and an expected time;

– a time line of engineering actions to perform the repair, the minimum as
well as the expected time that these actions require, and the temporal
constraints among them; and

– a set of required assets for the entire strategy and for each action.
Workaround generation requires detailed knowledge about the

capabilities of engineering equipment and its use. For example, repairing
damage to a bridge typically involves different types of mobile bridging
equipment and earth moving equipment. Each kind of mobile bridge takes a
characteristic amount of time to deploy, requires different kinds of bank
preparation, and is owned by different echelons in the military hierarchy.
This information was available from military experts and Army field
manuals.

4. DOMAIN MODELING FOR INTEGRATED
KNOWLEDGE REPRESENTATION,
KNOWLEDGE ACQUISITION, LEARNING AND
PROBLEM SOLVING

The Disciple modeling of an application domain provides a natural way
to integrate knowledge representation, knowledge acquisition, learning and
problem solving, into an end-to-end shell for building practical, knowledge-
based agents. We have adopted the classical task reduction paradigm as the
problem solving approach. In this paradigm, a task to be accomplished by

8 Chapter 1

the agent is successively reduced to simpler tasks, until the initial task is
reduced to a set of elementary tasks that can be immediately performed.
Within this paradigm, an application domain is modeled based on six types
of knowledge elements: objects, features, tasks, examples, explanations, and
problem reduction rules.

The objects represent either specific individuals or sets of individuals
(also called concepts) in the application domain. The objects are
hierarchically organized according to the generalization relation. Figure 3,
for instance, presents a partial hierarchy of objects of the workaround agent.
Included are several types of military bridges that can be used to cross a
river.

Figure 3. A sample of the object hierarchy

The features and the sets of features are used to further describe objects,
other features and tasks. For instance, Figure 4 contains the descriptions of
two objects from the hierarchy in Figure 3, AVLB (an acronym for armored
vehicle launched bridge) and AVLB70. An AVLB is a type of fixed-military
bridge that has additional features. AVLB70 is a type of AVLB bridge. Each
such object (concept) inherits all of the features of its superconcepts.
Therefore, all the features of AVLB are also features of AVLB70.

1. A Tutoring Based Approach to the Development of Intelligent Agents 9

Figure 4. Descriptions of two objects from the hierarchy in Figure 3

The features are defined in the same way as the objects, in terms of more
general features. Figure 5, for instance, presents a sample of the feature
hierarchy. Two important characteristics of any feature are its domain (the
set of objects that could have this feature) and its range (the set of possible
values of the feature). The features may also specify functions for computing
their values.

A task is a representation of anything that the agent may be asked to
accomplish. The following, for instance, is the description of the task to
workaround an unmined destroyed bridge by using a fixed military bridge:

WORKAROUND-UNMINED-DESTROYED-BRIDGE-WITH-FIXED-BRIDGE
AT-LOCATION SITE100
FOR-GAP SITE103
BY-UNIT UNIT91010

The bridge is at location SITE100, the river gap crossed by the bridge is
SITE103, and the military unit to perform the workaround is UNIT91010. Each of
these objects is an element of the object hierarchy, and is described by its
own features and values. Similarly, the features AT-LOCATION, FOR-GAP, and
BY-UNIT, are elements of the feature hierarchy. The task itself is an element of
the task hierarchy.

The objects, features and tasks are represented as frames, according to
the OKBC knowledge model, with some extensions (Chaudhri et al. 1998).

AVLB SUBCLASS-OF FIXED-MILITARY-BRIDGE

MIN-CROSSING-TIME-FOR-UNSTABILIZED-END 2 MIN

EXPECTED-CROSSING-TIME-FOR-UNSTABILIZED-END 10 MIN

MIN-EMPLACEMENT-TIME 5 MIN

EXPECTED-EMPLACEMENT-TIME 10 MIN

MAX-DOWNHILL-SLOPE-FOR-EQ 19 %

MAX-TRANSVERSE-SLOPE 11 %

MAX-UPHILL-SLOPE-FOR-EQ 28 %

AVLB70 SUBCLASS-OF AVLB

HAS-WIDTH 19.2 METERS

MAX-GAP 17 METERS

MAX-REDUCIBLE-GAP 26 METERS

MLC-RATING 70 TONS

WEIGHT 15 TONS

10 Chapter 1

Figure 5. A sample of the feature hierarchy

The examples represent specific task reductions, and have the following
general form:

TR: IF the task to accomplish is T1

THEN accomplish the tasks T11, … , T1n

A task may be reduced to one simpler task, or to a (partially ordered) set
of tasks. Correct task reductions are called positive examples and incorrect
ones are called negative examples. An example of task reduction is
presented in Figure 6. It states that in order to work around the damaged
bridge at SITE100, one has to use a bridge equipment of type AVLB-EQ and to
reduce the size of the gap.

An explanation of a task reduction is an expression of objects and
features that indicates why a task reduction is correct (or why it is incorrect).
It corresponds to the justification given by a domain expert for a specific
task reduction:

the task reduction TR is correct because E

One could more formally represent the relationship between a task
reduction TR and its explanation E as follows:

E è TR, or E è (accomplish(T1) è accomplish(T11, ... , T1n))

This interpretation is useful in a knowledge acquisition and learning
context where the agent tries to learn how to accomplish a task and why the
solution is correct from a domain expert.

1. A Tutoring Based Approach to the Development of Intelligent Agents 11

IF the task to accomplish is
WORKAROUND-UNMINED-DESTROYED-BRIDGE-WITH-FIXED-BRIDGE

AT-LOCATION SITE100
FOR-GAP SITE103
BY-UNIT UNIT91010

THEN accomplish the task
USE-FIXED-BRIDGE-WITH-GAP-REDUCTION-OVER-GAP

AT-LOCATION SITE100
FOR-GAP SITE103
BY-UNIT UNIT91010

WITH-BR-EQ AVLB-EQ

Figure 6. An example of task reduction

For example, an explanation of the task reduction from Figure 6 is the
one from Figure 7.

Figure 7. Explanations of the task reduction in Figure 6

The first two explanation pieces justify why one needs to use gap
reduction. The width of the SITE103 gap is 25 m and the AVLB-EQ allows
building a bridge of type AVLB70 that can only span gaps up to 17 m.
Therefore, the gap is too wide to install AVLB70 directly. However, any gap
that is smaller than 26 m can be reduced to a 17 m gap on which one can

SITE103 HAS-WIDTH 25M,
AVLB-EQ CAN-BUILD AVLB70 MAX-GAP 17M < 25M

SITE103 HAS-WIDTH 25M,
AVLB-EQ CAN-BUILD AVLB70 MAX-REDUCIBLE-GAP 26M = 25M

UNIT91010 MAX-WHEELED-MLC 20T,
AVLB-EQ CAN-BUILD AVLB70 MLC-RATING 70T = 20T

UNIT91010 MAX-TRACKED-MLC 40T,
AVLB-EQ CAN-BUILD AVLB70 MLC-RATING 70T = 40T

12 Chapter 1

install an AVLB70 bridge. The next two explanation pieces show that an
AVLB70 bridge is strong enough to sustain the vehicles of UNIT91010. Indeed,
the maximum load class of the wheeled vehicles of UNIT91010 is 20 tons and
AVLB70 can sustain vehicles with a load of up to 70 tons. Similarly, the
AVLB70 bridge can sustain the tracked vehicles of UNIT91010.

The relationship between the task reduction TR and its explanation E can
also be represented in the equivalent form:

((accomplish(T1) & E) è accomplish(T11, ... , T1n))

which, in a problem solving context, is interpreted as:

IF the task to accomplish is T1 and
E holds

THEN accomplish the tasks T11, … , T1n

Finally, the task reduction rules represent general reductions of tasks to
subtasks as well as the conditions when such reductions can be performed:

IF the task to accomplish is T1g and
Eh holds

THEN accomplish the tasks T11g, … , T1ng

In addition to the rule's condition that needs to hold in order for the rule
to be applicable, the rule may also have several EXCEPT-WHEN conditions
that should not hold, in order for the rule to be applicable. The rule may also
have EXCEPT-FOR conditions (that specify negative exceptions of the rule)
and FOR conditions (that specify positive exceptions).

In Disciple, the task reduction rules are learned by the agent through an
interaction with the domain expert. The ontology of objects, features and
tasks serves as the generalization hierarchy for Disciple. An example is
basically generalized by replacing its objects with more general objects from
the ontology. Another important aspect of Disciple is that the ontology is
itself evolving during knowledge acquisition and learning. This distinguishes
Disciple from most of the other learning agents that make the less realistic
assumption that the representation language for learning is completely
defined before any learning can take place.

Because the Disciple agent is an incremental learner, most often its rules
are only partially learned. A partially learned rule has two conditions, a
plausible upper bound (PUB) condition Eg which, as an approximation, is
more general than the exact condition Eh, and a plausible lower bound (PLB)
condition Es which, as an approximation, is less general than Eh:

IF the task to accomplish is T1g and
PUB: Eg holds
PLB: Es holds

THEN accomplish the tasks T11g, … , T1ng

1. A Tutoring Based Approach to the Development of Intelligent Agents 13

We will refer to such a rule as a plausible version space rule, or PVS rule.
Plausible version space rules are used in problem solving to generate task
reductions with different degrees of plausibility, depending on which of its
conditions are satisfied. If the PLB condition is satisfied, then the reduction
is very likely to be correct. If PLB is not satisfied, but PUB is satisfied, then
the solution is considered only plausible. The same rule could also be
applied for tasks that are considered similar to T1g. In such a case the
reductions are considered even less plausible. Any application of a PVS rule
however, either successful or not, provides an additional (positive or
negative) example, and possibly an additional explanation piece, that are
used by the agent to further improve the rule. The plausible version space
rule learned from the example in Figure 6 is presented in Figure 8.

Figure 8. A task reduction rule

The workaround agent receives as input the description of damage and
generates a plan to work around it. Figure 9 presents an example of such a
plan.

14 Chapter 1

Figure 9. A generated workaround plan

The damage is a destroyed bridge and UNIT91010 has to work around it.
The best plan consists of installing an AVLB bridge over the river gap. It is
estimated that this will take a minimum of 11h:4m:58s, the expected
duration being 14h:25m:56s. UNIT91010 will need the help of UNIT202, which
has AVLB equipment, and of UNIT201, which has a bulldozer. After the bridge
is installed, it will allow a traffic rate of 135.13 vehicles/h. The plan consists
of 12 elementary actions. UNIT91010 has to obtain operational control of
UNIT202 which has the AVLB. Then this unit has to come to the site of the
destroyed bridge. Also, UNIT91010 has to obtain operational control of UNIT201

which has a bulldozer. This unit will have to move to the site of the
destroyed bridge and then to narrow the river gap from 25m to 17m. These

1. A Tutoring Based Approach to the Development of Intelligent Agents 15

actions can take place in parallel with the actions of bringing UNIT202 to the
bridge site. Then the AVLB bridge is emplaced, the bulldozer moves over the
bridge and clears the other side of the river to restore the flow of traffic. This
plan was generated by successively reducing the WORKAROUND-DAMAGE task
to simpler subtasks, until this task was reduced to the 12 tasks in Figure 9.

5. ARCHITECTURE OF THE DISCIPLE
LEARNING AGENT SHELL

The architecture of Disciple-LAS is presented in Figure 10. It includes
seven main components, shown in the light gray area, which are domain
independent:
– a knowledge acquisition and learning component for developing and

improving the KB. It contains several modules for rule learning, rule
refinement, and exception handling, and a set of browsers and editors,
each specialized for one type of knowledge (objects, features, tasks,
examples, explanations and rules).

– a domain-independent problem solving engine based on task reduction. It
supports both interactive (step by step) problem solving and autonomous
problem solving.

– a knowledge import/export component for accessing remote ontologies
located on OKBC servers.

– a knowledge base manager which controls access and updates to the
knowledge base. Each module of Disciple can access the knowledge base
only through the functions of the KB manager.

– an OKBC layer which assures a uniform management of all the elements
of the knowledge base, according to the OKBC knowledge model. It also
allows future integration with Disciple of efficient memory management
systems, such as PARKA (Stoffel et al. 1997).

– an initial domain-independent knowledge base to be developed for the
specific application domain. This knowledge base contains the elements
that will be part of each knowledge base built with Disciple, such as an
upper-level ontology.

– a window-based, domain-independent, graphical user interface, intended
to be used primarily by the knowledge engineer.
The two components in the dark gray area are the domain dependent

components that need to be developed and integrated with the Disciple-LAS
shell to form a customized agent for a specific application. They are:
– a domain-dependent graphical user interface which is built for the

specific agent to allow the domain experts to communicate with the agent

16 Chapter 1

in a manner as close as possible to the way they communicate in their
environment.

– a domain-specific problem solving component that extends the basic
task-reduction engine in order to satisfy the specific problem solving
requirements of the application domain.

Figure 10. General architecture of Disciple-LAS

In order to assure the portability of the shell, the interface is implemented
in JAVA and all the other components are implemented in Common LISP.

6. THE METHODOLOGY OF BUILDING DISCIPLE
AGENTS

In this section we will briefly present the main steps of the integrated
Disciple-LAS methodology for building end-to-end agents. We will stress
the characteristic features of this methodology and we will illustrate them
with informal intuitive examples from the development of the workaround
agent described above. The steps of the methodology are to be executed in
sequence but at each step one can return to any of the previous steps to fix
any discovered problem.

1. A Tutoring Based Approach to the Development of Intelligent Agents 17

6.1 Specification of the problem

The domain expert and the knowledge engineer generally accomplish this
step together. The workaround challenge problem was defined in a 161-page
report created by Alphatech (1998). This report also identified many of the
concepts which needed to be represented in the agent’s ontology, such as
military units, engineering equipment, types of damage, and geographical
features of interest. Therefore, it provided a significant input to the ontology
building process.

6.2 Modelling the problem solving process as task
reduction

Once the problem is specified, the expert and the knowledge engineer
have to model the problem solving process as a task reduction, because this
is the problem solving approach currently supported by the Disciple shell.
However, the knowledge acquisition and learning methods of Disciple are
general; one of our future research directions is to apply them in conjunction
with other types of problem solvers. In the case of the workaround challenge
problem, task reduction proved to actually be a very natural way to model
the problem solving process because of the problem solver being a
hierarchical non-linear planner. During the modeling process several
informal task reduction trees were built. The top part of such a tree is
presented in Figure 11. It represents a strategy to solve a certain class of
workaround problems. There are several important results of the modeling
process. The first is the conceptual task reductions that will guide the
training of the agent by the domain expert. Informal descriptions of the
agent’s tasks are also produced. Additional necessary concepts and features
are identified. Finally, the modeling process reveals similarities between
different tasks.

6.3 Developing the customized agent

For the workaround domain, the task reduction engine had to be
customized by including a component for ordering the generated plans based
on the minimum time needed to execute them, and by generating a summary
description of each plan. Additionally, an interface for displaying maps with
the damaged area was integrated into the agent architecture.

18 Chapter 1

Figure 11. Informal task reduction tree

6.4 Importing concepts and features from other
ontologies

As a result of the first two stages of the methodology, a significant
number of necessary concepts and features will have been identified.
Interacting with the Knowledge Base Import/Export Module, the domain
expert attempts to import the descriptions of these concepts from an OKBC
server. The expert can select a concept or its entire sub-hierarchy and the
knowledge import module will introduce this new knowledge into Disciple’s
knowledge base.

In the case of the HPKB experiment, we imported from the LOOM
server (MacGregor, 1991) elements of the military unit ontology, as well as
various characteristics of military equipment (such as their tracked and
wheeled vehicle military load classes). The extent of knowledge import was
more limited than it could have been because the LOOM ontology was
developed at the same time as that of Disciple; we had to define concepts
that were later defined in LOOM and could have been imported. In any case,
importing those concepts proved to be very helpful, and has demonstrated
the ability to reuse previously developed knowledge.

1. A Tutoring Based Approach to the Development of Intelligent Agents 19

6.5 Extending the ontology

The Disciple shell contains specialized browsing and editing tools for
each type of knowledge element. It contains an object editor, a feature editor,
a task editor, an example editor, a rule editor, a hierarchy browser and an
association browser. We have defined a specialized editor for each type of
knowledge element to facilitate the interaction with the domain expert.
Using these tools, the domain expert and the knowledge engineer will define
the rest of the concepts and features identified in steps 1 and 2 (that could
not be imported), as well as some or all of the tasks informally specified in
step 3. The rest of the tasks, as well as new tasks, objects and features, can
also be defined during the next step of training the agent.

6.6 Training the agent for its domain-specific tasks

During this step, the expert teaches Disciple to solve problems in a
cooperative, step by step, problem solving session. The expert selects or
defines an initial task and asks the agent to reduce it. The agent will try
different methods to reduce the current task. First it will try to apply the rules
with their exact or plausible lower bound conditions, because these are most
likely to produce correct results. If no reduction is found, then it will try to
use the rules considering their plausible upper bound conditions.

If the agent is not able to reduce the current task, then the solution must
be defined by the expert. In such a case it represents an initial example for
learning a new task reduction rule. To learn the rule, the agent will use the
multistrategy learning method represented in Figure 12.

Figure 12. The rule learning method of Disciple

20 Chapter 1

As Explanation-based Learning (DeJong and Mooney, 1986; Mitchell,
Keller, Kedar-Cabelli, 1986), the learning method consists of two phases,
explanation and generalization. However, in the explanation phase the agent
is not building a proof tree, but only a justification. Also, the generalization
is not a deductive one, but an analogy-based one.

Let us consider that the example provided by the expert is the one from
Figure 6. The agent will first try to find an explanation of why the reduction
is correct. This explanation is presented in Figure 7. Then the example and
the explanation are generalized to the plausible version space rule from
Figure 8. The most difficult part of this method is finding the explanation.
The agent will attempt various heuristic strategies to propose plausible
explanations from which the user will choose the correct ones. For instance,
the agent will consider the rules that reduce the same task into different
subtasks, and will use the explanations corresponding to these rules to
propose similar explanations for the current reduction. This heuristic is based
on the observation that the explanations of the alternative reductions of a
task tend to have similar structures. The same factors are considered, but the
relationships between them are different. Figure 13, for instance, shows three
different reductions of the task to workaround a destroyed bridge.

Figure 13. Generation of explanations by analogy with other reductions of the same task

1. A Tutoring Based Approach to the Development of Intelligent Agents 21

The leftmost reduction consists of installing the fixed bridge with minor
preparations, the center reduction consists of using gap reduction, and the
rightmost reduction consists of using slope reduction. In a particular
situation, the decision of which of these reductions to perform depends upon
the specific relationships between the dimensions of the bridge and the
dimensions of the river gap. Below each reduction in Figure 13 there are the
explanations corresponding to it. Bi-directional arrows connect the similar
explanations. As one can see, if the agent has already learned a rule
corresponding to any of these reductions, then learning the rules
corresponding to the other reductions is much simpler because the agent can
propose explanations by analogy with those of the learned rule.

Another heuristic is to generate explanations of a task reduction by
analogy with the explanations corresponding to the reduction of a similar
task, as illustrated in Figure 14.

Figure 14. Generation of explanations by analogy with reductions of similar tasks

The bottom part of Figure 14 shows two possible reductions of the task
of working around a destroyed bridge by using a floating bridge. The left
hand side reduction consists of using the bridge with minor preparations,
while the right hand side reduction consists in using the bridge with slope
reduction. As indicated in Figure 14, the explanation of each of these task
reductions is similar (and therefore could be generated by analogy) with the

22 Chapter 1

explanations of the reductions from the top part of Figure 14 that consists in
using a fixed military bridge. The goal of using these heuristics is to have the
agent propose explanations ordered by their plausibility with the expert
choosing the right ones, rather than requiring the expert to define them.

The above strategy works well when the agent has already learned rules
similar to the rule currently being learned. In the situations when this is not
true the agent has to acquire the explanations from the expert. However,
even in such cases, the expert need not provide explanations, but only hints
that may have various degrees of detail. Let us consider, for instance, the
task reduction in Figure 6. The expert can give the agent a very general hint,
such as, "Look for correlations between SITE103 (the river gap) and AVLB-EQ."
A more specific hint would be "Look for correlations between the width of
SITE103 and AVLB-EQ". An even more specific hint would be "Look for
correlations between the width of SITE103 and the widths of the gaps
breachable with AVLB-EQ." Such hints will guide the agent in looking for
explanations that have a certain pattern, as indicated in the left hand side of
Figure 15.

Figure 15. Guiding the agent to generate explanations

Among the plausible explanations proposed by the agent will be the
correct explanations shown in the right hand side of Figure 15. Notice that

1. A Tutoring Based Approach to the Development of Intelligent Agents 23

when matching the pattern corresponding to a hint with the explanation in
the agent's ontology, the agent uses the generalization hierarchy of the
features. For instance, WIDTH in the hint matches with HAS-WIDTH in the
explanations because HAS-WIDTH is a subclass of WIDTH (see Figure 5). Also,
GAP-WIDTH will match with both MAX-REDUCIBLE-GAP and MAX-GAP. The goal
of this process is to allow the expert to provide hints or incomplete
explanations rather than detailed explanations.

Let us now consider some of the other possible cases, where the agent
proposes reductions based on the existing rules. If the expert accepted the
reduction and it was obtained by applying the plausible upper bound
condition of a rule, then the plausible lower bound condition of the rule is
generalized to cover this reduction. If the reduction is rejected by the expert,
then the agent will attempt to find an explanation of why the reduction is not
correct (as described above), and will use this explanation to augment the
applied rule with EXCEPT-WHEN conditions. When no such failure
explanation is found, the agent may simply specialize the rule, to uncover
the negative example. When this is not possible, the rule will be augmented
with an EXCEPT-FOR condition. In a given situation, the agent may
propose more than one solution. Each may be characterized separately as
good or bad, and treated accordingly. Learning may be also postponed for
some of these examples.

This training scenario encourages and facilitates knowledge reuse
between different parts of the problem space, as has been experienced in the
workaround domain. For instance, many of the rules corresponding to the
AVLB bridges have been either generalized to apply to the bridges of types
MGB and Bailey, or have been analogically used to generate examples and
explanations to learn new rules for MGB and Bailey. These rules have been
further generalized to apply to the floating bridges, or have been analogically
used to generate examples and explanations to learn new rules for floating
bridges. Then the rules for floating bridges have been used in a similar way
for ribbon rafts. The rules for installing fixed bridges with slope reduction
have been used similarly for fording with slope reduction, for ribbon bridges
with slope reduction, and for ribbon rafts with slope reduction. The rules for
installing fixed bridges over river gaps (with minor preparation or with gap
reduction) have been generalized to rules for installing fixed bridges over
gaps to also apply to craters. Many of the rules for de-mining craters applied
also to demining bridges. The rules for reasoning about obtaining operational
control of the engineering units and those for reasoning about position were
generalized to apply to various types of workaround problems.

24 Chapter 1

6.7 Testing and using the agent

During this phase the agent is tested with additional problems, the
problem solver being used in autonomous mode to provide complete
solutions without the expert's interaction. If any solution is not the expected
one, then the expert enters the interactive mode to identify and help the agent
fix the error, as described before. A non-expert user can use the developed
agent. However, more interesting is the case where the agent continues to act
as an assistant to the expert, solving problems in cooperation with and
continuously learning from the expert, and becoming more and more useful.

In the case of the workaround domain, Alphatech provided a set of 20
testing problems, each with up to 9 different types of relevant solutions.
These examples were used to train and test the agent.

6.8 Experimental Evaluation

The Disciple methodology and workaround agent were tested together
with three other systems in a two week intensive study, in June 1998, as part
of DARPA's annual HPKB program evaluation. The evaluation consisted of
two phases, each consisting of a test and a re-test. In the first phase, the
systems were tested on 20 problems provided by Alphatech that were similar
with those used for systems development. Then the solutions were provided
and the developers had one week to improve their systems, which were
tested again on the same problems. In the second phase, the systems were
tested on five new problems, partially or completely out of the scope of the
systems. For instance, they specified a new type of damage (cratered roads),
or required the use of new types of engineering equipment (TMM bridges,
ribbon rafts and M4T6 rafts). Then again the correct solutions were provided
and the developers had one week to improve and develop their systems,
which were tested again on the same five problems and five new ones.
Solutions were scored along five equally weighted dimensions:
1. generation of workaround solutions for all the viable options,
2. correctness of the overall time estimate for each workaround solution,
3. correctness of each solution step,
4. correctness of temporal constraints among these steps, and
5. appropriateness of engineering resources used.

Scores were assigned by comparing the systems' answers with those of
Alphatech's expert. Bonus points were awarded when systems gave better
answers than the expert did, and these answers were used as standard
solutions for the next phase of the evaluation.

The participating teams were not uniform in terms of prior system
development and human resources. Consequently, only one of them

1. A Tutoring Based Approach to the Development of Intelligent Agents 25

managed to enter the evaluation with a fully developed agent, the other three
having agents with incompletely developed knowledge bases. Figure 16
shows a plot of the overall coverage against the overall correctness of each
system, for each of the two phases of the evaluation.

Figure 16. Evaluation results

We entered the evaluation with a workaround agent with a knowledge
base which covered only about 40% of the workaround domain (11841
binary predicates). The coverage of our agent was declared prior to each
release of the testing problems and all the problems falling within its scope
were attempted and scored. During the evaluation period we continued to
extend the knowledge base to cover more of the initially specified domain, in
addition to the developments required by the modification phase. At the end
of the two weeks of evaluation, the knowledge base of our agent grew to
cover about 80% of the domain (20324 binary predicates). This corresponds
to a rate of knowledge acquisition of approximately 787 binary
predicates/day, as indicated in Figure 17. This result supports the claim that
the Disciple approach enables rapid acquisition of relevant problem solving
knowledge from subject matter experts.

With respect to the quality of the generated solutions, the Disciple agent,
within its scope, performed at the level of the human expert. There were
several cases during the evaluation period when the Disciple workaround
agent generated more correct or more complete solutions than those of the
human evaluator. There were also cases when the agent generated new
solutions that the human expert did not initially consider. For instance, it
generated solutions to work around a cratered road by emplacing a fixed

26 Chapter 1

bridge over the crater in a manner similar to emplacing a fixed bridge over a
river gap. Or, in the case of several craters, it generated solutions where
some of the craters were filled while fixed bridges were emplaced over
others. These solutions were adopted by the evaluator and used as standard
for improving all the systems. For this reason, although the Disciple agent
also made some mistakes, the overall correctness of its solutions was
practically as high as that of the evaluator's solutions. This result supports a
second claim that the acquired problem solving knowledge is of a good
enough quality to assure a high degree of correctness of the solutions
generated by the agent.

Figure 17. Knowledge acquisition rate

Finally, our workaround generator also had a very good performance,
being able to generate a solution in about 0.3 seconds, on a medium power
PC. This supports a third claim that the acquired problem solving knowledge
assures a high performance of the problem solver.

Based on the evaluation results, the agent developed with Disciple-LAS
was selected by DARPA and Alphatech to be further extended and was
integrated by Alphatech into a larger system that supports air campaign
planning by the JFACC and his/her staff. The integrated system was one of
the systems selected to be demonstrated at EFX'98, the Air Force's annual
show case of promising technologies.

As compared with Disciple-LAS, the other tools used in the HPKB
project to solve the workaround problem reflect a different approach and
philosophy to rapid development of knowledge-based systems. ISI’s
development environment consists of two domain-independent tools, the
LOOM ontology server (MacGregor 1991), and the EXPECT system for
knowledge base refinement (Gil 1994), both being tools designed to assist
the knowledge engineer, rather than the domain expert. Also, the focus is on

1. A Tutoring Based Approach to the Development of Intelligent Agents 27

assisting the refinement of the knowledge base rather than its initial creation.
The approach taken by both Teknowledge (TFS) and the University of
Edinburgh (AIAI) is based on Cyc (Lenat 1995) and emphasizes rapid
development of knowledge-based systems through the reuse of the
previously developed Cyc ontology. A main difference from our approach is
that Cyc is based on a very carefully engineered general ontology, that is to
be reused for different applications, while in our case we take the position
that the imported ontology should be customized for the current domain.
Also, Cyc’s concepts and axioms are manually defined, while in Disciple the
rules are learned and refined by the system through an interaction with the
user.

7. CONCLUSION

In this chapter we have discussed several issues regarding the design and
development of intelligent agents, and solutions for these issues in the
Disciple approach. The Disciple approach facilitates the development of
intelligent agents by domain experts by reducing the complexity of the
operations involved in building agents to simpler ones. For instance, rather
than developing an entire ontology from scratch, it facilitates importing
relevant parts from external knowledge servers. Rather than manually
defining and testing task reduction rules, it can learn such rules from specific
examples of task reductions and their explanations. Even the definition of an
explanation is facilitated by the use of hints and analogical reasoning.

There are, however, several weaknesses in this approach that we plan to
address in the future. For instance, the Disciple shell does not yet support the
initial modeling of the domain, which is critical to the successful
development of the agent. We therefore plan to develop a modeling tool that
will use abstract descriptions of tasks and objects in a scenario similar to that
used in teaching the agent. Also, importing concepts and features from
previously developed ontologies, although very appealing is actually quite
hard to accomplish. We are therefore planning to develop methods where the
modeling process and the agent provide more guidance in identifying the
knowledge pieces to import. Finally, we need to develop a more powerful
and natural approach to hint specification by the expert. The current types of
allowable hints do not constrain the search for explanations enough, and
some of them are not very intuitive for the expert.

Nevertheless, we believe that through such an approach it will some day
be possible to develop learning agent shells that will be customized, taught
and trained by normal users as easily as they now use personal computers for
text processing or email. Therefore, the work on Disciple is part of a long

28 Chapter 1

term vision where personal computer users will no longer be simply
consumers of ready-made software, as they are today, but also developers of
their own software assistants.

ACKNOWLEDGEMENTS

Andrei Zaharescu has contributed to the development of the interface of
Disciple.This research was supported by the AFOSR grant F49620-97-1-
0188, as part of the DARPA’s High Performance Knowledge Bases
Program.

REFERENCES

Alphatech, Inc. 1998. HPKB Year 1 End-to-End Battlespace Challenge Problem
Specification, Burlington, MA.

Chandrasekaran, B., and Johnson, T. R. 1993. Generic Tasks and Task Structures: History,
Critique and New Directions, In David, J.M., Krivine, J.P., and Simmons, R. eds. Second
Generation Expert Systems, pp.239-280. Springer-Verlag.

Chaudhri, V. K., Farquhar, A., Fikes, R., Park, P. D., and Rice, J. P. 1998. OKBC: A
Programmatic Foundation for Knowledge Base Interoperability. In Proc. AAAI-98, pp.
600 – 607, Menlo Park, CA: AAAI Press.

Clancey, W. J. 1984. NEOMYCIN: Reconfiguring a rule-based system with application to
teaching. In Clancey W. J. and Shortliffe, E. H., eds. Readings in Medical Artificial
Intelligence, pp.361-381. Reading, MA: Addison-Wesley.

Cohen P., Schrag R., Jones E., Pease A., Lin A., Starr B., Gunning D., and Burke M. 1998.
The DARPA High-Performance Knowledge Bases Project, AI Magazine, 19(4),25-49.

Farquhar, A., Fikes, R., and Rice, J. 1996. The Ontolingua Server: a Tool for Collaborative
Ontology Construction. In Proceedings of the Knowledge Acquisition for Knowledge-
Based Systems Workshop, Banff, Alberta, Canada.

Fellbaum, C. ed. 1998. WordNet: An Electronic Lexical Database , MIT Press.
Giarratano, J., and Riley, G. 1994. Expert Systems: Principles and Programming, Boston,

PWS Publ. Comp.
Gil, Y. 1994. Knowledge Refinement in a Reflective Architecture. In Proc. AAAI-94, Seattle,

WA.
Lenat, D. B. 1995. CYC: A Large-scale investment in knowledge infrastructure Comm of the

ACM 38(11):33-38.
MacGregor R. 1991. The Evolving Technology of Classification-Based Knowledge

Representation Systems. In Sowa, J. ed. Principles of Semantic Networks: Explorations in
the Representations of Knowledge, pp. 385-400. San Francisco, CA: Morgan Kaufmann.

Michalski, R. S. and Tecuci, G., eds. 1994. Machine Learning: A Multistrategy Approach
Volume 4. San Mateo, CA.: Morgan Kaufmann.

Musen, M.A. and Tu S.W. 1993. Problem-solving models for generation of task-specific
knowledge acquisition tools. In Cuena J. ed. Knowledge-Oriented Software Design,
Elsevier, Amsterdam.

1. A Tutoring Based Approach to the Development of Intelligent Agents 29

Stoffel, K., Taylor, M., and Hendler, J. 1997. Efficient Management of Very Large
Ontologies. In Proc. AAAI-97, Menlo Park, Calif.: AAAI Press.

Tecuci, G. 1998. Building Intelligent Agents: An Apprenticeship Multistrategy Learning
Theory, Methodology, Tool and Case Studies. London, England: Academic Press.

Tecuci, G., Boicu, M., Wright, K., Lee, S.W., Marcu, D. and Bowman, M. 1999. An
Integrated Shell and Methodology for Rapid Development of Knowledge-Based Agents.
To appear in Proc. AAAI-99, July 18-22, Orlando, Florida, Menlo Park, CA:AAAI Press.

Tecuci, G. and Kodratoff, Y. eds. 1995. Machine Learning and Knowledge Acquisition:
Integrated Approaches.: Academic Press.

UMLS 1998. Unified Medical Language System, UMLS Knowledge Sources 9th Edition,
National Library of Medicine. (http://www.nlm.nih.gov/research/umls/)

