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Abstract
This paper introduces the concept of learning agent shell as
a new class of tools for rapid development of practical end-
to-end knowledge-based agents, by domain experts, with
limited assistance from knowledge engineers. A learning
agent shell consists of a learning and knowledge acquisition
engine as well as an inference engine and supports building
an agent with a knowledge base consisting of an ontology
and a set of problem solving rules. The paper describes a
specific learning agent shell and its associated agent build-
ing methodology. The process of developing an agent relies
on importing ontologies from existing repositories of
knowledge, and on teaching the agent how to perform
various tasks, in a way that resembles how an expert would
teach a human apprentice when solving problems in
cooperation. The shell and methodology represent a
practical integration of knowledge representation,
knowledge acquisition, learning and problem solving. This
work is illustrated with an example of developing a
hierarchical non-linear planning agent.

Introduction
This paper describes recent progress in developing an
integrated shell and methodology for rapid development of
practical end-to-end knowledge-based agents, by domain
experts, with limited assistance from knowledge engineers.

We use the term "knowledge-based agent" to broadly
denote a knowledge based system that interacts with a
subject matter expert (SME) to learn from the expert how
to assist him or her with various tasks.

Our work advances the efforts of developing methods,
tools, and methodologies for more rapidly building
knowledge-based systems. One of the early major
accomplishments of these efforts was the concept of expert
system shell (Clancey 1984). An expert system shell
consists of a general inference engine for a given expertise
domain (such as diagnosis, design, monitoring, or
interpretation), and a representation formalism for
encoding the knowledge base for a particular application in
that domain.

The idea of the expert system shell emerged from the
architectural separation between the general inference
engine and the application-specific knowledge base, and
the goal of reusing the inference engine for a new system.

Currently, we witness a similar separation at the level of
the knowledge base, which is more and more regarded as
consisting of two main components: an ontology that
defines the concepts from the application domain, and a set
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of problem solving rules (methods) expressed in terms of
these concepts.

While an ontology is characteristic to a certain domain
(such as an ontology of military units, or an ontology of
military equipment), the rules are much more specific,
corresponding to a certain type of application in that
domain (e.g. rules for an agent that assists a military
commander in critiquing courses of action, or rules for an
agent that assists in planning the repair of damaged bridges
or roads).

The emergence of domain ontologies is primarily a result
of terminological standardization in more and more
domains to facilitate automatic processing of information,
particularly information retrieval. Some of existing
ontologies are UMLS (UMLS 1998), CYC (Lenat 1995),
and WordNet (Fellbaum 1998).

The availability of domain ontologies raises the
prospects of sharing and reusing them when building a new
system. However, sharing and reusing the components of
different knowledge representation systems are hard
research problems because of the incompatibilities in their
implicit knowledge models. Recently, the Open Knowledge
Base Connectivity (OKBC) protocol has been developed as
a standard for accessing knowledge bases stored in
different frame representation systems (Chaudhri et al.
1998). OKBC provides a set of operations for a generic
interface to such systems. There is also an ongoing effort of
developing OKBC servers for various systems, such as
Ontolingua (Farquhar et al. 1996) and Loom (MacGregor
1991). These servers are becoming repositories of reusable
ontologies and domain theories, and can be accessed using
the OKBC protocol.

The existence of domain ontologies facilitates the
process of building the knowledge base, which may reduce
to one of reusing an existing ontology and defining the
application specific problem solving rules. This effort,
however, should not be underestimated. Several decades of
knowledge engineering attests that the traditional process
by which a knowledge engineer interacts with a domain
expert to manually encode his or her knowledge into rules
is long, difficult and error-prone. Also, automatic learning
of rules from data does not yet provide a practical solution
to this problem. An alternative approach to acquiring
problem solving rules is presented in (Tecuci 1998). In this
approach an expert interacts directly with the agent to teach
it how to perform domain specific tasks. This teaching of
the agent is done in much the same way as teaching a
student or apprentice, by giving the agent examples and
explanations, as well as supervising and correcting its
behavior. During the interaction with the expert the agent
learns problem solving rules by integrating a wide range of
knowledge acquisition and machine learning techniques,
such as apprenticeship learning, empirical inductive
learning from examples and explanations, analogical
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learning and others.
Based on these developments and observations, we

propose the concept of "learning agent shell" as a tool for
building intelligent agents by domain experts, with limited
assistance from knowledge engineers. A learning agent
shell consists of a learning and knowledge acquisition
engine and an inference engine that support building an
agent with a knowledge base composed of an ontology and
a set of problem solving rules.

In this paper we present the Disciple Learning Agent
Shell (Disciple-LAS) and its methodology for rapid
development of knowledge based agents, which relies upon
importing ontologies from existing repositories using the
OKBC protocol and on teaching the agents to perform
various tasks through cooperative problem solving and
apprenticeship multistrategy learning. Among the major
developments of Disciple-LAS with respect to previous
versions of Disciple, we could mention:
• the adoption of the OKBC knowledge model as the basic

representation of Disciple's ontology and the extension
of the Disciple's apprenticeship multistrategy learning
methods to deal with this more powerful knowledge
model. These methods have become more knowledge-
intensive and less dependent on expert's help, especially
through the use of more powerful forms of analogical
reasoning. The primary motivation of this extension was
to facilitate the ontology import process.

• the development and integration into Disciple of a
general purpose cooperative problem solver, based on
task reduction. It can run both in a step by step mode and
in autonomous mode.

• the development of an integrated methodology for
building end-to-end agents.

With respect to the Disciple-LAS shell and methodology
we formulate the following three claims:
• they enable rapid acquisition of relevant problem solving

knowledge from subject matter experts, with limited
assistance from knowledge engineers;

• the acquired problem solving knowledge is of a good
enough quality to assure a high degree of correctness of
the solutions generated by the agent;

• the acquired problem solving knowledge assures a high
performance of the problem solver.

The rest of the paper is organized as follows. We first
introduce the Disciple modeling of an application domain.
Then we present the architecture of Disciple-LAS, the
specification of an agent built with Disciple, and the agent
building methodology. We present experimental results of
building the specified agent, and we conclude the paper.

Domain Modeling for Integrated Knowledge
Acquisition, Learning and Problem Solving

We claim that the Disciple modeling of an application
domain provides a natural way to integrate knowledge
representation, knowledge acquisition, learning and
problem solving, into an end-to-end shell for building
practical knowledge-based agents.

As problem solving approach we have adopted the
classical task reduction paradigm. In this paradigm, a task
to be accomplished by the agent is successively reduced to
simpler tasks until the initial task is reduced to a set of

elementary tasks that can be immediately performed.
Within this paradigm, an application domain is modeled

based on six types of knowledge elements:

1. Objects that represent either specific individuals or
sets of individuals in the application domain. The objects
are hierarchically organized according to the generalization
relation.

2. Features and sets of features that are used to further
describe objects, other features and tasks. Two important
features of any feature are its domain (the set of objects
that could have this feature) and its range (the set of
possible values of the feature). The features may also
specify functions for computing their values, and are also
hierarchically organized.

3. Tasks and sets of tasks that are hierarchically
organized. A task is a representation of anything that the
agent may be asked to accomplish.

The objects, features and tasks are represented as frames,
according to the OKBC knowledge model, with some
extensions.

4. Examples of task reductions, such as:

TR: If the task to accomplish is T1

then accomplish the tasks T11, … , T1n

A task may be reduced to one simpler task, or to a
(partially ordered) set of tasks. Correct task reductions are
called positive examples and incorrect ones are called
negative examples.

5. Explanations of task reduction examples. An
explanation is an expression of objects and features that
indicates why a task reduction is correct (or why it is
incorrect). It corresponds to the justification given by a
domain expert to a specific task reduction:

the task reduction TR is correct because E

One could more formally represent the relationship
between TR and E as follows:

E Ð TR, or E Ð (accomplish(T1) Ð accomplish(T11, ... , T1n))

This interpretation is useful in a knowledge acquisition and
learning context where the agent tries to learn from a
domain expert how to accomplish a task and why the
solution is correct.

However, the example and its explanation can also be
represented in the equivalent form:

((accomplish(T1) & E) Ð accomplish(T11, ... , T1n))

which, in a problem solving context, is interpreted as:

If the task to accomplish is T1 (1)
and E holds

then accomplish the tasks T11, ... , T1n

6. Rules. The rules are generalizations of specific
reductions, such as (1), and are learned by the agent
through an interaction with the domain expert, as described
in (Tecuci, 1998):

If the task to accomplish is T1g and (2)
Eh holds

then accomplish the tasks T11g, ... , T1ng

In addition to the rule’s condition that needs to hold in
order for the rule to be applicable, the rule may also have
several "except-when" conditions that should not hold, in
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order for the rule to be applicable. An except-when
condition is a generalization of the explanation of why a
negative example of a rule does not represent a correct task
reduction. Finally, the rule may also have "except-for"
conditions (that specify instances that are negative
exceptions of the rule) and "for" conditions (that specify
positive exceptions).

The ontology of objects, features and tasks serves as the
generalization hierarchy for Disciple-LAS. An example is
basically generalized by replacing its objects with more
general objects from the ontology. In the current version of
Disciple-LAS the features and the tasks are not generalized,
but they are used for analogical reasoning and learning.

Another important aspect of Disciple is that the ontology
is itself evolving during knowledge acquisition and
learning. This distinguishes Disciple from most of the other
learning agents that make the less realistic assumption that
the representation language for learning is completely
defined before any learning could take place.

Because the Disciple agent is an incremental learner,
most often its rules are only partially learned. A partially
learned rule has two conditions, a plausible upper bound
(PUB) condition Eg which, as an approximation, is more
general than the exact condition Eh, and a plausible lower
bound (PLB) condition Es which, as an approximation, is
less general than Eh:

If the task to accomplish is T1g and (3)
PUB: Eg holds
PLB: Es holds

then accomplish the tasks T11g, ... , T1ng

We will refer to such a rule as a plausible version space
rule, or PVS rule. Plausible version space rules are used in
problem solving to generate task reductions with different
degrees of plausibility, depending on which of its
conditions are satisfied. If the PLB condition is satisfied,
then the reduction is very likely to be correct. If PLB is not
satisfied, but PUB is satisfied, then the solution is
considered only plausible. The same rule could potentially
be applied for tasks that are similar to T1g. In such a case
the reductions would be considered even less plausible.

Any application of a PVS rule however, either successful
or not, provides an additional (positive or negative)
example, and possibly an additional explanation, that are
used by the agent to further improve the rule.

Architecture of the Disciple-LAS
The architecture of Disciple-LAS is presented in Figure 1.
It includes seven main components, shown in the light gray
area, which are domain independent:
• a knowledge acquisition and learning component for

developing and improving the KB. It contains several
modules for rule learning, rule refinement, and exception
handling, and a set of browsers and editors, each
specialized for one type of knowledge (objects, features,
tasks, examples, explanations and rules).

• a domain-independent problem solving engine based on
task reduction. It supports both interactive (step by step)
problem solving and autonomous problem solving.

• a knowledge import/export component for accessing
remote ontologies located on OKBC servers, or for
importing knowledge from KIF files (Genesereth and
Fikes, 1992).

• a knowledge base manager which controls access and
updates to the knowledge base. Each module of Disciple
can access the knowledge base only through the
functions of the KB manager.

• an OKBC layer which assures a uniform management of
all the elements of the knowledge base, according to the
OKBC knowledge model. It also allows future
integration with Disciple of efficient memory manage-
ment systems, such as PARKA (Stoffel et al. 1997).

• an initial domain-independent knowledge base to be
developed for the specific application domain. This
knowledge base contains the elements that will be part of
each knowledge base built with Disciple, such as an
upper-level ontology.

• a window-based, domain-independent, graphical user
interface, intended to be used primarily by the
knowledge engineer.

Figure 1: General architecture of the Disciple-LAS

The two components in the dark gray area are the domain
dependent components that need to be developed and
integrated with the Disciple-LAS shell to form a
customized agent for a specific application. They are:
• a domain-dependent graphical user interface which is

built for the specific agent to allow the domain experts to
communicate with the agent as close as possible to the
way they communicate in their environment.

• a domain-specific problem solving component that
extends the basic task-reduction engine in order to satisfy
the specific problem solving requirements of the
application domain.

Disciple-LAS is implemented in JAVA and LISP, in a
client-server architecture that assures portability, multi-user
development of agents, and fast (socket) connection.

Rapid Development of a Workaround Agent
The integrated Disciple-LAS and methodology were
developed as part of the DARPA's High Performance
Knowledge Bases Program (Cohen et al. 1998), and were
applied to rapidly build a planning agent for solving the
workaround challenge problem. We will use this problem
to illustrate the Disciple methodology. The problem
consisted of assessing how rapidly and by what method a
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military unit can reconstitute or bypass damage to an
infrastructure, such as a damaged bridge or a cratered road
(Alphatech 1998).

The input to the agent includes two elements: (1) a
description of the damage (e.g. a span of the bridge is
dropped and the area is mined), and of the terrain (e.g. the
soil type, the slopes of the river’s banks, the river’s speed,
depth and width), (2) a detailed description of the resources
in the area that could be used to repair the damage. This
includes a description of the engineering assets of the
military unit that has to workaround the damage, as well as
the descriptions of other military units in the area that could
provide additional resources.

The output of the agent consists of the most likely repair
strategies, each described in terms of three elements: (1) a
reconstitution schedule, giving the transportation capacity
of the damaged link (bridge, road or tunnel), as a function
of time, including both a minimum time and an expected
time; (2) a partially ordered plan of engineering actions to
perform the repair, and the minimum as well as the
expected time that each of these actions require; and (3) a
set of required resources for the entire plan and for each
action.

Workaround generation requires detailed knowledge
about the capabilities of various types of engineering
equipment and about their use. For example, repairing
damage to a bridge typically involves different types of
mobile bridging equipment and earth moving equipment.
Each kind of mobile bridge takes a characteristic amount of
time to deploy, requires different kinds of bank
preparation, and is owned by different echelons in the
military hierarchy. This information was acquired from
military experts and Army field manuals.

The Methodology for Building Agents
In this section we will briefly present the main steps of the
integrated Disciple-LAS methodology for building end-to-
end agents, stressing the characteristic features of this
methodology and illustrating them with informal intuitive
examples from its application to the development of the
workaround agent described above. The steps are to be
executed in sequence but at each step one could return to
any of the previous steps to fix any discovered problem.

1. Specification of the problem

The SME and the knowledge engineer generally
accomplish this step. In the HPKB program, the
workaround challenge problem was defined in a 161-page
report created by Alphatech (1998). This report already
identified many concepts needed to be represented in
agent’s ontology, such as military units, engineering
equipment, types of damage, and geographical features of
interest. Therefore, it provided a significant input to the
ontology building process.

2.Modeling the problem solving process as task reduction

Once the problem is specified, the expert and the
knowledge engineer have to model the problem solving
process as task reduction, because this is the problem
solving approach currently supported by the Disciple shell.
However, the knowledge acquisition and learning methods
of Disciple are general, and they could be applied in
conjunction with other types of problem solvers, this being
one of our future research directions.

In the case of the workaround challenge problem, task
reduction proved to actually be a very natural way to model
it, the problem solver being a hierarchical non-linear
planner.

During the modeling process, the domain is partitioned
into classes of typical problem solving scenarios, and for
each such scenario, an informal task reduction tree is
defined. Examples of problem solving scenarios for the
workaround domain are: workaround a damaged bridge by
performing minor preparation to install a fixed bridge over
the river, workaround a damaged bridge by performing gap
reduction to install a fixed bridge, workaround a damaged
bridge through fording, workaround a gap in the bridge by
using a fixed bridge, workaround a damaged bridge by
installing a ribbon bridge, etc.

There are several important results of the modeling
process: (1) an informal description of the agent’s tasks is
produced, (2) additional necessary concepts and features
are identified, (3) conceptual task reduction trees are
produced that will guide the training of the agent by the
domain expert.

3. Developing the customized agent

For the workaround domain, the task reduction engine had
to be customized by including a component for ordering
the generated plans based on the minimum time needed to
execute them, and by generating a summary description of
each plan. Also, an interface for displaying maps with the
damaged area was integrated into the agent architecture.

4. Importing concepts and features from other ontologies

As a result of the first two steps of the methodology, a
significant number of necessary concepts and features have
been identified. Interacting with the Knowledge
Import/Export Module, the domain expert and the
knowledge engineer attempt to import the descriptions of
these concepts from an OKBC server. The expert can select
a concept or its entire sub-hierarchy and the knowledge
import module will automatically introduce this new
knowledge into Disciple’s knowledge base. This process
involves various kinds of verifications to maintain the
consistency of Disciple’s knowledge.

In the case of the HPKB experiment, we imported from
the LOOM server (MacGregor, 1991) elements of the
military unit ontology, as well as various characteristics of
military equipment (such as their tracked and wheeled
military load classes). The extent of knowledge import was
more limited than it could have been because the LOOM’s
ontology was developed at the same time as that of
Disciple, and we had to define concepts that have later
been also defined in LOOM and could have been imported.

In any case, importing those concepts proved to be very
helpful, and has demonstrated the ability to reuse
previously developed knowledge.

5. Extending the ontology

The Disciple shell contains specialized browsing and
editing tools for each type of knowledge element. It
contains an object editor, a feature editor, a task editor, an
example editor, a rule editor, a hierarchy browser and an
association browser. We have defined a specialized editor
for each type of knowledge element to facilitate the
interaction with the domain expert.
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Using these tools, the domain expert and the knowledge
engineer will define the rest of the concepts and features
identified in steps 1 and 2 (that could not be imported), as
well as the tasks informally specified in step 3. New tasks,
objects and features, could also be defined during the next
step of training the agent.

6. Training the agent for its domain-specific tasks

While the previous steps are more or less standard in any
agent building methodology (with the possible exception of
the agent customization step and the ontology importing
step), the training of the agent is a characteristic step of the
Disciple agent building methodology.

The main result of this step is a set of problem solving
rules. Defining correct problem solving rules in a
traditional knowledge engineering approach is known to be
very difficult. The process implemented in Disciple is
based on the following assumptions:
• it is easier for an SME to provide specific examples of

problem solving episodes than general rules;
• it is easier for an SME to understand a phrase in agent's

language (such as an example or an explanation) than to
create it;

• it is easier for an SME to specify hints on how to solve a
problem than to give detailed explanations;

• it is easier for the agent to assist the SME in the
knowledge acquisition process if the agent has more
knowledge.

As a consequence, Disciple incorporates a suite of methods
that reduce knowledge acquisition and learning from an
SME to the above simpler operations, and are based on
increasing assistance from the agent. These methods
include:
• methods to facilitate the definition of examples of task

reductions;
• heuristic, hint-based and analogy-based methods to

generate the explanations of a task reduction;
• analogy-based method to generalize examples to rules;
• methods to generate relevant examples to refine the

reduction rules, etc.
During this step, the expert teaches Disciple to solve
problems in a cooperative, step by step, problem solving
scenario. The expert selects or defines an initial task and
asks the agent to reduce it.

The agent will try different methods to reduce the current
task. First it will try to apply the rules with their exact or
plausible lower bound conditions, because these are most
likely to produce correct results. If no reduction is found,
then it will try to use the rules considering their plausible
upper bound conditions. If again none of these rules apply,
then the agent may attempt to use rules corresponding to
tasks known to be similar with the one to be reduced. For
instance, to reduce the task "Workaround a destroyed
bridge using a floating bridge with slope reduction", the
agent may consider the reduction rules corresponding to the
similar task "Workaround a destroyed bridge using a fixed
bridge with slope reduction."

If the solution was defined or modified by the expert,
then it represents an initial example for learning a new
reduction rule. To learn the rule, the agent will first try to
find an explanation of why the reduction is correct. Then
the example and the explanation are generalized to a

plausible version space rule. The agent will attempt various
strategies to propose plausible explanations from which the
user will choose the correct ones. The strategies are based
on an ordered set of heuristics. For instance, the agent will
consider the rules that reduce the same task into different
subtasks, and will use the explanations corresponding to
these rules to propose explanations for the current
reduction. This heuristic is based on the observation that
the explanations of the alternative reductions of a task tend
to have similar structures. The same factors are considered,
but the relationships between them are different. For
instance, if the task is to workaround a damaged bridge
using a fixed bridge over the river gap, then the decision of
whether to employ (or, equivalently, the explanation of
why to employ) an installation of the bridge with minor
preparation of the area, or with gap reduction, or with slope
reduction, depends upon the specific relationships between
the dimensions of the bridge and the dimensions of the
river gap. The goal is to have the agent propose
explanations ordered by their plausibility and the expert to
choose the right ones, rather than requiring the
explanations from the expert.

This above strategy works well when the agent already
has a significant amount of knowledge related to the
current reduction. In the situations when this is not true the
agent has to acquire the explanations from the expert.
However, even in such cases, the expert need not provide
explanations, but only hints that may have various degrees
of detail. Let us consider, for instance, the reduction of the
task "Workaround damaged bridge using an AVLB70
bridge over the river gap", to the task "Install AVLB70
with gap reduction over the river gap". The expert can give
the agent a very general hint, such as, "Look for
correlations between the river gap and AVLB70." A more
specific hint would be "Look for correlations between the
length of the river gap and the lengths of the gaps
breachable with AVLB70." Such hints will guide the agent
in proposing the correct explanation: "The length of the
river gap is greater than the length of AVLB70, but less
than the maximum gap that can be reduced in order to use
AVLB70".

The goal is to allow the expert to provide hints or
incomplete explanations rather than detailed explanations.

The above situations occur when the expert provides the
reduction of the current task and will ultimately result in
learning a new task reduction rule.

We will now briefly consider some of the other possible
cases, where the agent proposes reductions based on the
existing rules. If the reduction was accepted by the expert
and it was obtained by applying the plausible upper bound
condition of a rule, then the plausible lower bound
condition of the rule is generalized to cover this reduction.

If the reduction is rejected by the expert, then the agent
will attempt to find an explanation of why the reduction is
not correct, as described above. This explanation will be
used to refine rule's conditions. When no such failure
explanation is found, the agent may simply specialize the
rule, to uncover the negative example. When this is not
possible, the rule will be augmented with an except-for
condition.

In a given situation, the agent may propose more than
one solution. Each may be characterized separately as good
or bad, and treated accordingly. Learning may also be
postponed for some of these examples.
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This training scenario encourages and facilitates
knowledge reuse between different parts of the problem
space, as has been experienced in the workaround domain.
For instance, many of the rules corresponding to the AVLB
bridges have been either generalized to apply to the bridges
of types MGB and Bailey, or have been used to guide the
learning of new rules for MGB and Bailey. These rules
have in turn facilitated the learning of new rules for floating
bridges. The rules for floating bridges have facilitated the
learning of the rules for ribbon rafts, and so on.

7. Testing and using the agent

During this phase the agent is tested with additional
problems, the problem solver being used in autonomous
mode to provide complete solutions without the expert’s
interaction. If any solution is not the expected one, then the
expert enters the interactive mode to identify the error and
to help the agent to fix it, as described before.

The developed agent can be used by a non-expert user.
More interesting is, however, the case where the agent
continues to act as an assistant to the expert, solving
problems in cooperation, continuously learning from the
expert, and becoming more and more useful.

In the case of the workaround domain, the evaluator
provided a set of 20 testing problems, each with up to 9
different types of relevant solutions. These examples were
used to train and test the agent.

As has been shown above, the Disciple-LAS shell and
methodology provide solutions to some of the issues that
have been found to be limiting factors in developing
knowledge-based agents:
• limited ability to reuse previously developed knowledge;
• the knowledge acquisition bottleneck;
• the knowledge adaptation bottleneck;
• the scalability of the agent building process;
• finding the right balance between using general tools and

developing domain specific modules;
• the portability of the agent building tools and of the

developed agents.

Experimental Evaluation
The Disciple methodology and workaround agent were
tested together with three other systems in a two week
intensive study, in June 1998, as part of DARPA's annual
HPKB program evaluation (Cohen et al. 1998). The
evaluation consisted of two phases, each comprising a test
and a re-test. In the first phase, the systems were tested on
20 problems that were similar with those used for systems
development. Then the solutions were provided and the
developers had one week to improve their systems, which
were tested again on the same problems. In the second
phase, the systems were tested on five new problems,
partially or completely out of the scope of the systems. For
instance, they specified a new type of damage (cratered
roads), or required the use of new types of engineering
equipment (TMM bridges, ribbon rafts and M4T6 rafts).
Then again the correct solutions were provided and the
developers had one week to improve and develop their
systems, which were tested again on the same five
problems and five new ones. Solutions were scored along
five equally weighted dimensions: (1) generation of the

best workaround solutions for all the viable options, (2)
correctness of the overall time estimate for each
workaround solution, (3) correctness of each solution step,
(4) correctness of temporal constraints among these steps,
and (5) appropriateness of engineering resources used.
Scores were assigned by comparing the systems' answers
with those of Alphatech's human expert. Bonus points were
awarded when systems gave better answers than the expert
and these answers were used as standard for the next phase
of the evaluation.

The participating teams were not uniform in terms of
prior system development and human resources.
Consequently, only one of them succeeded to enter the
evaluation with a system that had a fully developed KB.
The other three teams entered the evaluation with systems
that had incompletely developed knowledge bases. Figure 2
shows a plot of the overall coverage of each system against
the overall correctness of that system, for each of the two
phases of the evaluation.
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Figure 2: Evaluation results.

We entered the evaluation with a workaround agent the
knowledge base of which was covering only about 40% of
the workaround domain (11841 binary predicates). The
coverage of our agent was declared prior to each release of
the testing problems and all the problems falling within its
scope were attempted and scored. During the evaluation
period we continued to extend the knowledge base to cover
more of the initially specified domain, in addition to the
developments required by the modification phase. At the
end of the two weeks of evaluation, the knowledge base of
our agent grew to cover about 80% of the domain (20324
binary predicates). This corresponds to a rate of knowledge
acquisition of approximately 787 binary predicates/day, as
indicated in Figure 3. This result supports the claim that the
Disciple approach enables rapid acquisition of relevant
problem solving knowledge from subject matter experts.

With respect to the quality of the generated solutions,
within its scope, the Disciple agent performed at the level
of the human expert. There were several cases during the
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evaluation period when the Disciple workaround agent
generated more correct or more complete solutions than
those of the human expert. There were also cases when the
agent generated new solutions that the human expert did
not initially consider. For instance, it generated solutions to
work around a cratered road by emplacing a fixed bridge
over the crater in a similar way with emplacing a fixed
bridge over a river gap. Or, in the case of several craters, it
generated solutions where some of the craters were filled
while on others fixed bridges were emplaced. These
solutions were adopted by the expert and used as standard
for improving all the systems. For this reason, although the
agent also made some mistakes, the overall correctness of
its solutions was practically as high as that of the expert’s
solutions. This result supports the second claim that the
acquired problem solving knowledge is of a good enough
quality to assure a high degree of correctness of the
solutions generated by the agent.

Figure 3: KB Development time.

Finally, our workaround generator had also a very good
performance, being able to generate a solution in about 0.3
seconds, on a medium power PC. This supports the third
claim that the acquired problem solving knowledge assures
a high performance of the problem solver.

Based on the evaluation results, the agent developed with
Disciple-LAS was selected by DARPA and Alphatech to
be further extended and was integrated by Alphatech into a
larger system that supports air campaign planning by the
JFACC and his/her staff. The integrated system was one of
the systems selected to be demonstrated at EFX’98, the Air
Force’s annual show case of the promising new
technologies.

Related Work
From the point of view of the methods and techniques
employed, this work is mostly related to the work on
apprenticeship learning that has produced experimental
agents that assimilate new knowledge by observing and
analyzing the problem solving steps contributed by their
expert users through their normal use of the agents
(Mahadevan et al. 1993, Wilkins 1993). Disciple-LAS is
different from these agents in terms of the types of learning
employed. Also it has been scaled up and developed into a

general integrated shell and methodology for building
practical end-to-end agents.

Disciple-LAS is also related to the tools for building
knowledge-based systems. Many of these tools provide an
inference engine, a representation formalism in which the
KB could be encoded, and mechanisms for acquiring,
verifying or revising knowledge expressed in that
formalism. These tools trade power (i.e., the assistance
given to the expert) against generality (i.e., their domain of
applicability), covering a large spectrum. At the power end
of the spectrum there are tools customized to a problem-
solving method and a particular domain (Musen and Tu,
1993). At the generality end are the tools applicable to a
wide range of tasks or domains, such as CLIPS (Giarratano
and Riley, 1994). In between are tools that are method-
specific and domain independent (Chandrasekaran and
Johnson, 1993).

With respect to the power-generality trade-off, Disciple-
LAS takes a different approach. It provides a set of general
and powerful modules for knowledge acquisition and
learning that are domain-independent and are incorporated
as such in a developed agent. However, for the interface
and the problem solver, the Disciple shell contains a
generic graphical-user interface and a problem solver based
on task-reduction. Therefore, for a given application
domain, one has to develop additional, domain-specific
interfaces and to further develop the problem solver, in
order to create an easy to train and a useful agent. In spite
of its generality, and due to its powerful learning
capabilities, Disciple’s support in knowledge acquisition is
similar to that of the specific tools. Moreover, it provides
support in all the stages of knowledge base construction,
both ontology and rules creation, and their refinement.
Many of the other systems stress either initial knowledge
creation, or its refinement. Finally, most of the other tools
are intended for the knowledge engineer, while Disciple-
LAS is oriented toward direct knowledge acquisition from
a human expert, attempting to limit as much as possible the
assistance needed from the knowledge engineer.

As compared with Disciple-LAS, the other tools used in
the HPKB project to solve the workaround challenge
problem reflect a different approach and philosophy to
rapid development of knowledge-based systems.

ISI’s development environment consists of two domain-
independent tools, the LOOM ontology server (MacGregor
1991), and the EXPECT system for knowledge base
refinement (Gil 1994), both being tools designed to assist
the knowledge engineer, rather than the domain expert.
Also, the focus is on assisting the refinement of the
knowledge base rather than its initial creation.

The approach taken by both Teknowledge (TFS) and the
University of Edinburgh (AIAI) is based on Cyc (Lenat
1995) and emphasizes rapid development of knowledge-
based systems through the reuse of the previously
developed Cyc ontology. A main difference from our
approach is that Cyc is based on a very carefully
engineered general ontology, that is to be reused for
different applications, while in our case we take the
position that the imported ontology should be customized
for the current domain. Also, Cyc’s concepts and axioms
are manually defined, while in Disciple the rules are
learned and refined by the system through an interaction
with the user.
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Conclusion and Future Research
The main result of this paper is an integration of knowledge
representation, knowledge acquisition, learning and
problem solving into an agent shell and methodology for
efficient development of practical end-to-end knowledge-
based agents, by domain experts, with limited assistance
from knowledge engineers. This approach is based on the
reuse and adaptation of previously developed knowledge,
and on a natural interaction with the domain expert which
are achieved through the use of synergism at several levels.
First, there is the synergism between different learning
methods employed by the agent. By integrating
complementary learning methods (such as inductive
learning from examples, explanation-based learning,
learning by analogy, learning by experimentation) in a
dynamic way, the agent is able to learn from the human
expert in situations in which no single strategy learning
method would be sufficient. Second, there is the synergism
between teaching (of the agent by the expert) and learning
(from the expert by the agent). For instance, the expert may
select representative examples to teach the agent, may
provide explanations, and may answer agent’s questions.
The agent, on the other hand, will learn general rules that
are difficult to be defined by the expert, and will
consistently integrate them into its knowledge base. Finally,
there is the synergism between the expert and the agent in
solving a problem, where the agent solves the more routine
parts of the problem and the expert solves the more
creative parts. In the process, the agent learns from the
expert, gradually evolving toward an intelligent agent.

There are, however, several weaknesses of this approach
that we plan to address in the future. For instance, the
initial modeling of the domain, which is critical to the
successful development of the agent, is not yet supported
by the shell. We therefore plan to develop a modeling tool
that will use abstract descriptions of tasks and objects in a
scenario similar to that used in teaching the agent. Also,
importing concepts and features from previously developed
ontologies, although very appealing is actually quite hard to
accomplish. We are therefore planning to develop methods
where the modeling process and the agent provide more
guidance in identifying the knowledge pieces to import. We
also need to develop a more powerful and natural approach
to hint specification by the expert. The current types of
allowable hints do not constrain enough the search for
explanations. Also, some of them are not very intuitive for
the expert. Finally, we are investigating how the learning
methods of the agent could become even more knowledge
intensive, primarily through the use of more powerful
methods of analogical reasoning.
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