

Effective Scenario Composition for the Revelation of Blind Spots in Critical Infrastructure Protection Planning

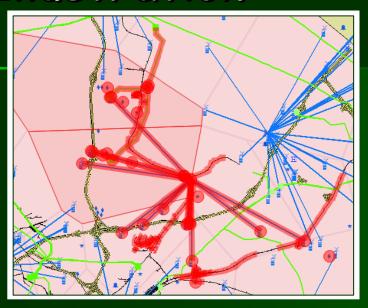
1st Annual IFIP Working Group 11.10 International Conference on Critical Infrastructure Protection

William J. Tolone¹, Seok-Won Lee¹, Wei-Ning Xiang², Robert K. McNally², Andrew Schumpert²

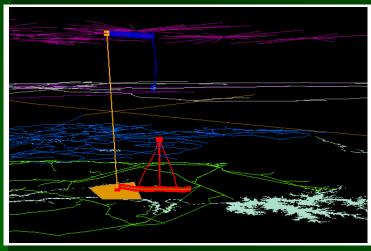
¹College of Computing and Informatics, ²Department of Geography and Earth Sciences University of North Carolina at Charlotte

Overview

- Project Overview
- Illustration
- Introduction
 - The Role of Scenarios in CIP Planning
 - Blind Spots in CIP Planning
- A Methodology for Scenario Set Composition
- A Functional and Spatial Framework for Scenario Set Composition
- Conclusions



Project Overview


- Critical Infrastructure Integration Modeling and Simulation Project
 - System of systems analysis project supported by the U.S. Government 2003 present
 - Currently completing 7th award
- Our objective is to enable integrated analysis of multiple critical infrastructures
 - Initial focus: physical infrastructures (EP, C4I, Transportation...)
 - Approach has been extended to demonstrate combined analyses of physical, organizational, and population behavior models
 - The integration of economic models is planned
- Our approach combines support for ontological, geospatial, and temporal analysis under a common framework
 - The support for ontological and geospatial analyses enables multiinfrastructure analyses
 - Individual infrastructure models, however, may leverage other modeling approaches or model representations

Illustration

Video Clip

20 March 2007 © William J. Tolone 5

Introduction: The Role of Scenarios in CIP Planning

- Definition: A scenario set bounds the range of vulnerabilities by connecting an initiating event(s), or initial conditions, to desired and undesired end states (different levels of damage) with a sequence of events linking the two
- Functionally, a scenario set is both:
 - A bridge that connects the process of analysis with that of planning
 - A cognitive apparatus that stretches people's thinking to broaden their perspectives of what is possible
- Scenarios are a favored instrument for CIP Planning

Introduction: Blind Spots in CIP Planning

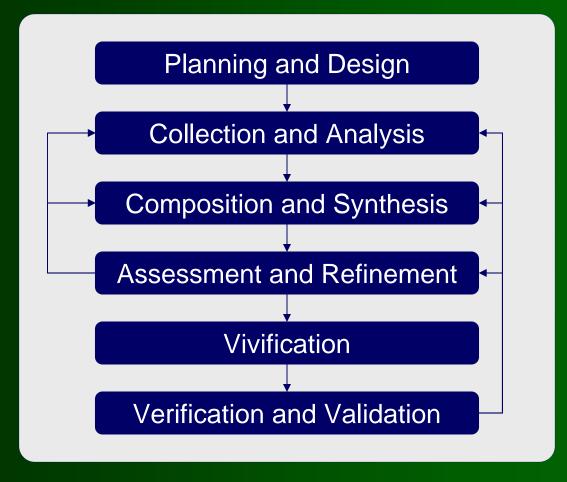
Motivation

 Unfortunately, scenarios are commonly composed using a nonsystematic "back-of-envelope" approach that relies solely on ease-based heuristics

Problem

- Strategies employed with ease-based heuristics, while simple, easy, and useful, are also narrow, shallow, and often biased

Result


- "Blind spots" in CIP planning
 - Blind spots are hidden or poorly understood relationships within a single or among multiple critical infrastructures that may lead to surprises and/or multiply infrastructure disruptions in negative ways

Challenge

- The revelation of blind spots to minimize their negative impact on the CIP planning process

A Methodology for Scenario Set Composition

20 March 2007 © William J. Tolone 8

A Methodology for Scenario Set Composition

- Planning and Design
 - Identifying the goals, phenomena, scope, and objectives
- Collection and Analysis
 - Collect and analyze information that is related to the scope of a scenario set to formulate a picture of the known
 - The range of potential events; the known immediate and cumulative consequences of each event; the causal bonds between consequences and events; timing information; geospatial properties; the cumulative consequences of each event
 - Identify, document, and relate factors that contain substantial variability and/or uncertainty
- Composition and Synthesis
 - Composition involves the arrangement of selected infrastructure information into a format that reflects a new future to be considered
 - It is a synthesis of spatial and functional representations and relationships to create narratives of plausible futures
 - Predictive analysis v. plausible futures

A Methodology for Scenario Set Composition: Composition and Synthesis -Disruption Event Taxonomy

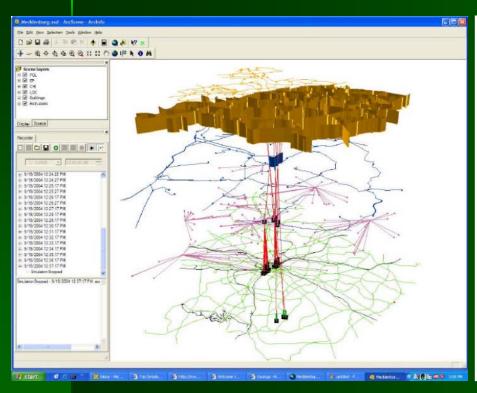
DISRUPTION TYPE	DESCRIPTION	
Type 1	One disruption event at one location disabling one feature	
Type 2	One disruption event at one location disabling multiple features	
Type 3	Multiple, simultaneous disruption events of type 1 and type 2	
Type 4	Multiple, temporally distributed disruption events of type 1, type 2, and type 3	

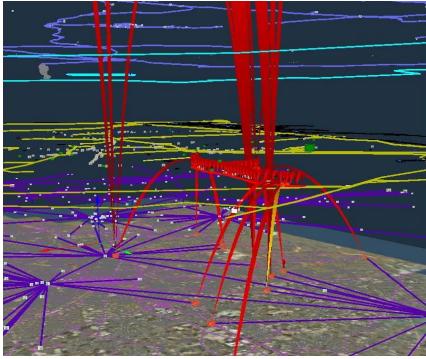
20 March 2007 © William J. Tolone

A Methodology for Scenario Set Composition

- Assessment and Refinement
 - Examine each of the possible scenarios for coherence or internal consistency
- Vivification
 - Vivid information is more accessible and more likely to attract and maintain attention while exciting the imagination
 - Scenario set vivification requires planners to pay close attention to their intended audience as some members may be more or less technical than others
- Verification and Validation
 - Scenario set verification is the process of determining whether the resulting scenarios are an accurate representation of the planner's conceptual picture of the known
 - Scenario set validation is the process of determining whether the resulting scenarios are consistent with the "real world" given the intended use or goals of the scenario set

A Methodology for Scenario Set Composition: Vivification





A Methodology for Scenario Set Composition: Vivification

A Functional & Spatial Framework for Scenario Set Composition

	FUNCTIONAL INTERDEPENDENCIES			
		Direct	Indirect	
SPATIAL PROXIMITY	High	Examples Substations and regulators Tandem offices and toll centers Regulators and pipelines Quadrant A	Examples Gas pipelines and high power lines MTSOs and toll centers Roads and substations Quadrant B	
DXIMITY	Low	Examples Central office and Central office Towers and MTSOs Power plant and substations Quadrant D	Examples Power plants and central offices Power plants and regulators Roads and high power lines Quadrant C	

A Functional & Spatial Framework for Scenario Set Composition

- Critical Infrastructure Scenario Advisory Panel
 - Representatives from Electric Power, Natural Gas, Telecommunications, and Transportation
 - Multiple contacts over ~15-18 month period
- Methodology
 - Delphi™Approach
 - Co-located, synchronous assessment sessions
 - Distributed, asynchronous assessment sessions
 - Case Study Designed Approach (Lee and Rine, 2004)
 - "Mimicked" real events
- Findings
 - Quadrant A high spatial proximity / direct functional dependency
 - Interdependencies in this quadrant are the central focus of most CIP planning
 - Quadrant B high spatial proximity / indirect functional dependency
 - Interdependencies in this quadrant usually receive insufficient attention during CIP planning
 - Quadrant C low spatial proximity / indirect functional dependency
 - Interdependencies in this quadrant are usually overlooked in the practice of CIP Planning
 - Quadrant D low spatial proximity / direct functional dependency
 - Often "intra-" infrastructure dependencies

Conclusions

- The more obvious
 - Tools are not enough
 - The study of methodology and practice are essential
 - Proper tools and methodologies can counter the natural tendencies of ease-based heuristics
 - The validation of CIP models is essential, but can be challenging
- The less obvious
 - The validation challenge is compounded when attempting to share analyses
 - Transparency of analysis
 - Context is key to critical infrastructure analyses
 - Context gives proper meaning to actions and events
 - Tools and methodologies must properly situate analyses geospatially, temporally, ontologically, etc.
- Situational Awareness v. Shared Situational Understanding

William J. Tolone, Ph.D.
College of Computing and Informatics
University of North Carolina at Charlotte
wjtolone@uncc.edu

