
Engineering Dependability Requirements for Software-intensive Systems
through the Definition of a Common Language

Seok-Won Lee and Robin Gandhi
Dept. of Software and Information Systems, The University of North Carolina at Charlotte

Charlotte, NC 28223-0001, USA. {seoklee, rgandhi}@uncc.edu

Abstract

Engineering dependability requirements for

software-intensive systems is inherently difficult.
Dependability of these systems relies heavily on the
emergent properties that result from the complex inter-
dependencies that exist among the involved systems
and their environments. Furthermore, the choice of a
modeling technique significantly affects the semantics
and the level of abstraction at which these systems are
modeled and analyzed. Therefore, to effectively predict
the emergent properties of the system as a whole, it is
necessary to gather information based on multiple
philosophies from complementary modeling techniques
and analyze them in the context of each other. To
realize such a unified approach during the early stages
of the RE lifecycle, we advocate the need for the
definition of a common language. The common
language provides a framework within which several
modeling techniques can be used in harmony to elicit
and create a common understanding through the
problem domain concepts, properties and their
relationships. We provide examples from our case
study on automating the standard Department of
Defense Information Technology Security Certification
and Accreditation Process (DITSCAP) to motivate the
applicability and appropriateness of our approach.

1. Introduction

We are witnessing ever more reliance on “systems
of systems” that have emerged as complex
amalgamations of underlying software, systems,
practice, and environment in government as well as
industry. The wide-spread use of such systems in
critical applications that range from embedded process
controls with mostly solid-state static interfaces to
large-scale information infrastructures operational in
dynamic socio-technical environments requires them to
exhibit compelling evidence that their services satisfy

certain dependability properties [29]. Such
dependability is mostly expressed in terms of safety,
security, availability, and reliability dimensions [36].
As we start to consider these dimensions for systems of
systems, we realize that they rely heavily on the
characteristics and capabilities of the system working
as a whole to satisfy their real world goals and
objectives. In essence, dependability along with other
non-functional and functional features arises from the
emergent properties exhibited by the collective
influences of individual systems on each other as well
as their propagative effects throughout the system.
Such influences build a cluster of closely
interdependent systems of systems. In the class of such
systems, the ones in which software offers a significant
portion of the system functionality are commonly
referred to as software-intensive systems [38].

Software-intensive systems that are operational in
socio-technical environments typically involve
interactions between software, hardware, people, data,
physical spaces, organizational policies, standards,
procedures, laws, and regulations. Naturally in such
multi-faceted environments, emergent properties which
affect dependability are inherently difficult to
understand and predict. Emergent properties can
provide unanticipated benefits or can deviate from
required capabilities of the system. In all cases,
emergent properties make predictions about
dependability, which is potentially the greatest risk to
software-intensive systems [3].

The key challenges in engineering dependability
requirements for software-intensive systems can be
summarized as: 1) Difficulty in understanding the
complexity of the relationships between diverse system
components in a socio-technical environment; 2)
Difficulty in establishing the extent to which
dependability requirements satisfy their real-world
goals and objectives; 3) Emergent properties of the
system as a whole influence dependability; 4)
Multitude of dependability requirements and their
interdependencies; 5) Varying semantics and levels of

To appear in Proceedings of the 13th IEEE International Requirements Engineering Conference (RE ‘05)
Workshop on Requirements Engineering for High-Availability Systems (RHAS), 8/29 – 9/2, Paris, France

1 of 9

abstractions in specifying dependability requirements
based on different methods and techniques; and 6) A
wide-range of system/service stakeholders that address
and evaluate dependability attributes from different
perspectives. Also, these issues further cause
breakdowns in communication between stakeholders as
well as porting of information from one RE stage to
another [7].

We contend that to address these challenges and
their diversity, software-intensive systems require RE
methods based on multiple philosophies from
complementary modeling techniques to elicit and
capture several dimensions of the problem domain.
Individual modeling techniques are effective for
capturing certain aspects of the system but themselves
cannot guarantee the accuracy and comprehensiveness
of the predicted emergent behavior. Therefore, to
effectively predict the emergent properties of the
integrated system it is necessary to gather information
based on multiple philosophies from complementary
modeling techniques and analyze them in the context
of each other. We believe that the lack of a
comprehensive and well-defined framework that can
accommodate different philosophies, methods and
techniques for modeling and analysis of dependability
requirements is at the root of the problem. To address
this issue, we contend that the definition of a common
language is required during the early stages of the RE
lifecycle. Such a common language provides a
framework within which complementary philosophies
and associated modeling techniques can be used in
harmony to elicit and create a common understanding
through the problem domain concepts, properties and
relationships in the Universe of Discourse (UofD). As
one would expect, the definition of such a common
language requires a rich set of representations,
modeling techniques and tools as well as systematic
ways to collect and organize the necessary information,
i.e. the Science of Design of engineering quality
dependability requirements for software-intensive
systems.

In this paper, we present an integrated and
comprehensive framework which combines novel
techniques from RE and knowledge engineering to
define and utilize a common language during the early
stages of RE. Within the framework we also introduce
the concept of Multi-Dimensional Link Analysis
(MDLA) that supports early identification/prediction of
emergent properties that affect dependability, by means
of its traceable rationales and tool support. We
understand that different dimensions/types of
dependability attributes are interrelated [16], but we
currently focus on the security dimension through
examples derived from our case study [20] on
automating the DITSCAP [12].

2. The Definition of a Common Language

We believe that in order to engineer quality (co-
operative, comprehensive and cost-effective)
dependability requirements, it is necessary to capture a
holistic view of the system. Such a view includes
relationships between system attributes, the
environment and the nexus of causal chains [18],
spanning several dimensions and levels of abstractions
that exist to satisfy the real world goals of the
associated users, business and organization.
Understanding user needs within the context of the
proposed system and as part of the wider
organizational setting can greatly increase the accuracy
and completeness of real-world requirements [7].
Furthermore, for critical operations, early reflections
on the emergent system properties are necessary to
predict whether the eventual system behavior will be
dependable or not. In the following subsections we
outline the characteristics and components of a
common language that embodies a comprehensive
view of the system under consideration.

2.1. Building a Common Language

Ideally, the definition of a common language
should encompass all dimensions of a problem domain,
captured at various levels of abstractions from diverse
viewpoints. Although such expressiveness in
representation is practically infeasible, we use
hierarchical organization of ontological concepts to
capture several key dimensions of the problem domain
with related properties and non-taxonomic
dependencies among them. The ontological concepts,
their properties and relationships are elicited from
various sources using RE modeling methods and
techniques that is most suitable. During the early
phases of RE, such ontological concepts are elicited
from users, natural-language documents, requirements
enforced through standards, various taxonomies in the
domain, transcripts, organizational policies, domain
knowledge, environmental constraints, laws and
regulations, etc. Finally as the higher level ontological
concepts become available, they are instantiated at the
leaf-node level with specific criteria that help in
gathering the related user/system information. These
leaf-nodes provide a way to establish the extent to
which the higher-level abstractions are satisfied
through specific policies, procedures or technical
rationales in the actual environment. Figure 1 provides
an overview of the various levels of abstractions in the
definition of a common language. Such a structured
organization of the problem domain knowledge has
several benefits: 1) It provides the definition of a

To appear in Proceedings of the 13th IEEE International Requirements Engineering Conference (RE ‘05)
Workshop on Requirements Engineering for High-Availability Systems (RHAS), 8/29 – 9/2, Paris, France

2 of 9

common language for interoperability and
communication at various levels of abstractions; 2)
Allows the projection of a system-wide view while
analyzing requirements; 3) The level of completeness
of the common language gives a clear indication of
areas of the problem domain that require further
exploration; 4) It provides traceability among concepts
in the problem domain to understand their inter-
dependencies.

As shown in Figure 1, the integral part of our
framework is a Problem Domain Ontology (PDO) that
provides the definition of a common language. The
PDO is a machine understandable, hierarchical
representation, engineered using object-oriented
ontological modeling techniques. The PDO
construction leverages knowledge engineering
techniques to support meta-knowledge creation,
representation and processing. It also provides the
ability to query and browse structured information
sources based on inference mechanisms. The inherent
benefits of such a PDO lie in the uniformity of its
representation allowing for its use, reuse and evolution
through all stages of the RE lifecycle.

Organizational
Policies

Other High-level
abstractions

Domain
KnowledgeRequirements

Specific criteria with
traceability support to
technical rationales

Structured hierarchical
representations and their

inter-dependencies
(Problem Domain

Ontology)

Requirements, taxonomies,
transcripts, organizational

policies, domain
knowledge, environmental
constraints, laws and other

high-level information

Constraints

User
goal/objectives

Environment System
attributes

Organization

Figure 1: Information at various levels of

abstractions in a Common Language

The PDO is modeled based on the GENeric Object
Model (GenOM) [23]. GenOM is an integrated
development environment for ontological engineering
processes with functionalities to create, browse, access,
query and visualize associated knowledge-bases.
GenOM inherits the theoretical foundation of the frame
representation and is compatible with the OKBC
specification [6] as well as the OWL representation
[28] format. GenOM’s rich modeling constructs
coupled with easily understandable semantics make it
an optimal choice for the creation of a common
language with participation from diverse stakeholders
and experts in the UofD. The conceptual architecture
of GenOM is shown in Figure 2.

The GenOM meta-language consists of objects,
properties, and features with semantics that effectively
support knowledge acquisition and representation.

GenOM objects can be used to describe the concepts in
a domain. It also supports modeling of hierarchical
structures by single or multiple inheritance
mechanisms. GenOM properties are used to describe
the characteristics or attributes of objects and features.
Finally, GenOM features are used to describe the
relationship or dependencies that exist between objects.
Once the objects, properties and features are defined,
they are instantiated to represent specific instances that
exist in a problem domain. GenOM is also associated
with an inference engine [4] which supports reasoning
based on the objects, properties, features and instances
defined in its knowledge-bases. In summary, GenOM
supports object modeling in its representation, usage of
objects in its application model, and ability to
aggregate evidence that supports the analysis of
objects’ behaviors (through the associated properties
and relationships between objects).

Application 2 Critical Infrastructure
Protection (CIP)

Property
Model

Object
Model

Feature
Model

Instance
Model

Viewpoints
Model

Inference
Model

Knowledge Structure

Hierarchical Object Model

GenOM Rule Base

GenOM Knowledge Base

Data/
Information Knowledge

Application
Layer

API
Layer

Foundation
Layer Visualization

Model

Collaboration
Model

Knowledge Representation Mediation / Mapping / Merging

Application 1 Application N

Figure 2: GenOM Conceptual Architecture

2.2 The Components of a Common Language

To systematically capture various aspects of the
problem domain through the definition of a common
language, we employ several popular and well-studied
RE philosophies, methods and techniques. Specifically,
we focus on RE modeling techniques based on the
notions of goals [40], viewpoints [15], scenarios [5],
and their combinations. Before outlining the
fundamental models and techniques for the creation of
a common language, we provide a brief introduction to
DITSCAP [12], which will help in presenting these
models using examples from the DITSCAP domain.
DITSCAP examples focus on the security dimension
of dependability requirements.

The role of DITSCAP is to maintain information
assurance and the security posture of the Defense
Information Infrastructure (DII) throughout the life-
cycle of the information systems contained in it.
DITSCAP focuses on the system mission,

To appear in Proceedings of the 13th IEEE International Requirements Engineering Conference (RE ‘05)
Workshop on Requirements Engineering for High-Availability Systems (RHAS), 8/29 – 9/2, Paris, France

3 of 9

environment, architecture, and life cycle while
assessing the impact of operation of the information
system on the overall security posture of the DII [19].
In a nutshell, the motivation of DITSCAP is to identify
and evaluate information security requirements
applicable to the target system; outline a set of
activities for performing Certification and
Accreditation (C&A); generate required
documentation; provide security solutions; and manage
information system security activities. The DITSCAP
problem domain is an ideal venue to study critical
software-intensive systems, as it consists of systems
which connect Department of Defense (DoD) mission
support, command and control, and intelligence
computers and users through voice, data, imagery,
video, and multimedia services. These information
processing and value-added services demand high
quality of trust in the information furnished through
them to the DoD and national-level decision makers.

We now introduce several models and techniques
which systematically guide the creation of a common
language in the DITSCAP domain.

2.2.1 Goal-driven Scenario Composition. RE
techniques that combine the benefits of goal and
scenario based approaches have been well researched
[33] [26] [39]. To incorporate aspects of the system
captured through these approaches in the definition of
a common language, we present the goal-driven
scenario composition technique. Following this
technique, high level goals are successively
decomposed into a set of specific goals whose
realization criteria is captured using leaf-node
scenarios. The goals in the hierarchy may express real-
world goals of the system and its users; or from a
process perspective, they can represent tasks and
activities in a process. The leaf node scenarios capture
specific user/system criteria related to the satisfaction
of parent goals in the hierarchy. Such a goal-driven
composition of scenarios helps in establishing their
coverage over the problem domain concepts in addition
to restricting their scope.

In the DITSCAP problem domain, goals of the
C&A process are extracted from the homogenous
groupings of well-defined tasks and activities outlined
in the DITSCAP Application Manual [11]. The
resulting hierarchical representation of the overall
C&A process systematically guides the user through
the DITSCAP. Furthermore, the leaf node scenarios
employ carefully designed questionnaires that elicit
user/system information required to identify the
applicable DITSCAP-oriented security requirements as
well as generate DITSCAP related documentation. To
elaborate in further detail, we present an example
where the security requirement of “Network Boundary

Defenses” i.e. firewalls installed at appropriate places
in a network, is being analyzed for a target system.
Figure 3 outlines a path through the C&A goal
hierarchy that will lead to a systematic exploration of
the concepts related to this security requirement. The
specific criteria gathered through the leaf-node
scenarios also helps to prune the search space
identified by the goals over DITSCAP-oriented
security requirements.

PRACTICE DITSCAP
C&A PROCESS

GENERATE SYSTEM
DEFINITION

C&A
PREPARATION

PERFORM SYSTEM
REGISTRATION

PERFORM C&A
NEGOTIATIONS

MISSION/SYSTEM
DESCRIPTION

ENVIRONMENT
DESCRIPTION

FACITLITY
DESCRIPTION

PHYSICAL
SECURITY

AMINISTRATIVE
SECURITY MAINTENANCE

TRAINING

DEFINE OPERATIONAL
ENVIRONMENT

GENERATE
RISK & THREAT
DESCRIPTION

DEFINE
THREATS

EVALUATE
DEGREE OF RISK

IDENTIFY
SYSTEM SECURITY
REQUIREMENTS

SYSTEM
ARCHITECHTURE

DESCRIPTION

IDENTIFY
HARDWARE

IDENTIFY
FIRMWARE

DEFINE
SYSTEM

INTERFACES

IDENTIFY
DATA FLOWS

IDENTIFY
ACCREDITATION

BOUNDARY

IDENTIFY
SOFTWARE

PERSONNEL

part of
starts with

required to

finalizes

starts with
part of part of part of

part of

part of part of part of

DRAFT
SSAA

concludes

• IS THE TARGET SYSTEM A MAJOR APPLICATION OR
ENCLAVE? (APPLICATION/ENCLAVE)

→ IF ENCLAVE { IS THE TARGET SYSTEM OVER A
LAN/WAN? (YES/NO)}

→ IF YES { ARE ADEQUATE BOUNDARY
DEFENSES IN PLACE? (YES/NO)}

• DOES THE LOCATION HAVE PROTECTED FACILITIES WHICH
NEED CLEARANCE TO ACCESS THE SYSTEM? (YES/NO)

• OTHER QUESTIONS…

Leaf-node realization
Scenarios presented as
Questionnaires

C&A process
Goals

Figure 3: Partial DITSCAP C&A Goal Hierarchy

2.2.2 Requirements Domain Model (RDM). The
RDM provides a systematic way to capture the
problem domain requirements, their properties and
inter-dependencies in the UofD. The RDM follows a
hierarchical representation format that includes top-
level generic requirements, mid-level domain spanning
requirements and leaf-node sub-domain requirements.
Such an organization of requirements allow for their
exploration to be conservative in nature i.e. to be more
inclusive rather than exclusive of aspects that need to
be considered in early stages of the RE lifecycle. All
requirements in the hierarchy also have several
attributes that capture information about their
descriptions, source, stakeholders, keywords, and
dependent requirements. The sources of requirements
in the RDM can be natural-language requirements,
requirements from C&A standards, taxonomies,
transcripts, manuals, organizational policies, domain
knowledge, environmental constraints, laws and
regulations and other domain-specific requirements
sources. Apart from hierarchical relationships, there

To appear in Proceedings of the 13th IEEE International Requirements Engineering Conference (RE ‘05)
Workshop on Requirements Engineering for High-Availability Systems (RHAS), 8/29 – 9/2, Paris, France

4 of 9

also exists several non-taxonomic links that represent
relationships within the RDM as well as with other
models in the definition of a common language. For
example, based on the level of abstractions of the goals
in the goal hierarchy, they map to requirements at the
corresponding levels of abstractions in the RDM.

In the DITSCAP PDO, a RDM is constructed using
security requirements extracted from DITSCAP-
oriented security requirements such as high-level
Federal laws [32], mid-level DoD policies [9] [37]
[12], and leaf-node site-specific security requirements
[10]. Continuing the example from the previous sub-
section, Figure 4 shows a partial RDM, which is
brought into focus based on the C&A goals and the
leaf-node questionnaires shown in Figure 3. In Figure
4 the security requirement under consideration is
labeled as R1 which is elaborated further using
questionnaires that address specific criteria for its
dependable operationalization. Furthermore, the non-
taxonomic relationships are used to identify related

requirements in other dimensions within the RDM,
which are labeled as R2, R3 and R4 in Figure 4. Such
relationships help to better understand and enforce the
requirements for DITSCAP target systems.

The questionnaires for requirement compliance are
usually derived from the elaborations of the security
requirements in DITSCAP-oriented documents or best
practices recommended in the DITSCAP domain. The
questionnaire shown in Figure 4 is generated from the
elaborations of that security requirement in [10], as
well as the best practices suggested in [13]. Similarly
the non-taxonomic relationships between requirements
are also discovered from the identification of keywords
in requirements descriptions and related best practices.

2.2.3 Other Supporting Hierarchical Models. In
addition to the C&A goal hierarchy, other models in
the DITSCAP PDO also relate to the RDM in various
ways. One such model is a viewpoints hierarchy which
is used to organize the concerns from a wide-range of

SECURITY PLAN

GENERAL SUPPORT
SYSTEMS

MAJOR
APPLICATIONS

PLAN &
DEVELOPMENT

MANAGEMENT
CONTROLS

TECHNICAL
CONTROLS

OPERATIONAL
CONTROLS

SCREEING OF
INDIVIDUALS

LEAST
PRIVILEGES

PENALTIES
FOR ILLEGAL

USER
OPERATIONS

USER ACCOUNT
ADMINISTRATION

RDM
ROOT NODE

OTHERS…

OTHERS…

OTHERS
…SECURITY

AWARENESS
& TRAINING

PERSONNEL
CONTROLS

CONTINGENCY
PLANNING

PHYSICAL &
ENVIRONMENTAL

SECURITY
CONTROLS

Generic-level Requirements
(Federal Laws)

Sub Domain Requirements
(DoDI/NIST)

NETWORK
CONTROLS

LOGICAL
ACCESS

CONTROLS

AUDIT
TRAILS OTHERS…

requires

requires

Access to
Need-to-Know
Information

Only individuals
who have a valid
need-to-know
that is
demonstrated by
assigned official
Government
duties.

Maintenance
Personnel

Maintenance
is performed
only by
authorized
personnel.

Least Privilege

Access
procedures
enforce the
principles of
separation of
duties and “least
privilege.”

ACQUISITION
CONTROLS

requires

Account
Access
Control

A
comprehensive
account
management
process is
implemented.

Privileged
Account
Control

All privileged
user accounts
are established
and
administered
in accordance
with a role-
based access
scheme.

administers

SOFTWARE
ACQUISITION

Acquisition
Standards

The acquisition of
all IA- and IA-
enabled GOTS IT
products is
limited to
products that
have been
evaluated by the
NSA or NSA-
approved
processes

helps_enforce

requires

Encryption
for Data in Transit

Information in transit
through a network at
the same classification
level, but which must
be separated for
need-to-know
reasons, is encrypted,
at a minimum, with
NIST-certified
cryptography

Enclave
Boundary
Defense

Include IDS
and firewall
at key
points in
the enclave

requires

Domain Specific
Requirements
(DOD/NIST)

OTHERS

Requirement Compliance Questionnaire for Enclave Boundary Defense
• How many key points are there that connects the internal network to the

external network?
• Is a firewall installed at all key points?

→ How many firewalls have been installed?
→ Is there firewall installed between the internal network and

external networks?
→ What is the type of firewall installed?
→ Is the firewall configured with a minimum set of allowed open ports

and appropriate rules?
→ Does the firewall filter ICMP time exceeds traffic going out of the

private network?

R1 R3R4 R2

Figure 4: Partial Requirements Domain Model in the DITSCAP PDO

To appear in Proceedings of the 13th IEEE International Requirements Engineering Conference (RE ‘05)
Workshop on Requirements Engineering for High-Availability Systems (RHAS), 8/29 – 9/2, Paris, France

5 of 9

stakeholders associated with a software-intensive
system. Viewpoints [15] provide an effective way to
organize the diversity of factors associated with the
requirements in the RDM. In a viewpoints hierarchy,
the higher level non-leaf nodes in the hierarchy
consists of viewpoints, such as organizational
viewpoints which map to generic and mid-level
requirements in the RDM, and the leaf nodes usually
represent viewpoints such as those of specific system
stakeholders, services or concerns that are related to
specific requirements in the leaf nodes of the RDM. To
further elaborate on the requirement for “boundary
defenses” in our example, Figure 5 outlines the various
stakeholders identified from a viewpoints hierarchy in
the DITSCAP PDO. The viewpoints in the DITSCAP
domain are identified from the roles and
responsibilities of various stakeholders related to
requirements in DITSCAP-oriented documents.

Information Gathered through the Viewpoints
Hierarchy:
Viewpoint Hierarchy of the direct stake holder's and the
higher organizational entities involved in enforcement and
deployment of boundary defenses:

Department of Commerce
Agency
DoD
Director Information System Agency
Head of DoD Components
Administrator Personnel (Privileged

User with IA responsibilities)

Related stakeholders identified from the related
requirement concerning Personnel:

Secretary of Defense for Personnel and
Readiness

IA Officer
Figure 5: Information from a Viewpoints Hierarchy

Information Gathered through the Risk Assessment
Taxonomy:
Directly related Countermeasures (C), Vulnerabilities (V)
and Threats (T) in the Risk Assessment Taxonomy for the
requirement of “boundary defenses”:

Countermeasures:
Network

Properly Configure Firewall
Vulnerabilities that can be exploited: Infrastructure

Open ports
Cyber

Software
Software Bugs

Threats faced:
Man-made

Intentional
Network

Information Leak
Denial of Service

C, V, T in Risk Assessment Taxonomy identified through
related requirements:

Countermeasures:
Personnel

Check Criminal History
Check Dual Citizenship

Vulnerability that can be exploited: Human/Social
Insider

Disgruntled Employee
Threat faced:

Man-made
Intentional

Insider
Information Disclosure

Figure 6: Information from a Risk Assessment
Taxonomy in the DITSCAP domain

In the DITSCAP PDO we also include a risk
assessment taxonomy which aggregates a broad
spectrum of possible categories and classification of
risk related information from the DITSCAP domain.
The upper level nodes of the risk assessment taxonomy
consist of threat, vulnerabilities, countermeasures,
asset properties, and mission criticality concepts
related to risk assessment. Each node is then further
decomposed into more specific categories. In addition,
several non-taxonomic links identify relationships
within risk categories as well as with other entities in
the DITSCAP PDO.

A risk assessment taxonomy is necessary to better
understand security requirements as they naturally
relate to various concepts of risk [21]. Such
relationships can be discovered from various sources
such as security requirements descriptions, research
literature, taxonomies or from domain experts. Figure 6
depicts the risk information gathered for the
requirement of “boundary defenses” used in our
example, based on such relationships.

3. Multi-Dimensional Link Analysis

Examples in the previous section demonstrate how
several core pieces of information that affect the
emergent properties of the system can be
systematically identified from the definition of a
common language and its underlying models. In the
DITSCAP domain, identification of such properties
contributes to strengthen and effectively estimate the
security dimension of system dependability.

Once the required pieces of information have been
gathered from the PDO, they finally become valuable
knowledge when they establish ‘links’ with each other
from various aspects/dimensions based on a certain set
of goals [22]. Following this paradigm, we introduce
the concept of MDLA which can be triggered from
different dimensions such as user criteria, viewpoints,
system goals, scenarios, business/mission
requirements, regulatory requirements, and risk
categories. Such knowledge helps to understand the
complex interdependencies and causal chains that exist
between the real world goals, objectives and the
components of a software intensive system. The PDO
naturally fosters such analysis through the hierarchical
organization of ontological concepts captured using
several complementing RE modeling techniques. It
increases the cohesiveness of information from various
dimensions and provides inherent properties of an
active approach to link requirements with other entities
in the environment. Such an integrated framework for
analytical analysis promotes a comprehensive coverage
of the system’s dependability attributes and

To appear in Proceedings of the 13th IEEE International Requirements Engineering Conference (RE ‘05)
Workshop on Requirements Engineering for High-Availability Systems (RHAS), 8/29 – 9/2, Paris, France

6 of 9

systematically drives their elicitation, modeling and
analysis by actively assisting in the process of
discovering missing, conflicting, and interdependent
pieces of information. A conceptual overview of
MDLA in the DITSCAP domain is presented in Figure
7. It clearly demonstrates how different aspects of a
requirement can be identified and analyzed within the
framework of a common language based on
information gathered from diverse system models with
complementary semantics.

Goal

Subgoal1 Subgoal2 Subgoaln

Subgoal21 Subgoal22Subgoal11

Leaf-node Questionnaires

Generic/
Common
Requirements

Domain
Spanning
Requirements

Individual/
Subdomain
Requirements

DITSCAP Risk Taxonomy DITSCAP Viewpoints Hierarchy

DITSCAP C&A Goal Hierarchy Requirements Domain Model

Requirements
under analysis

Figure 7: Conceptual overview of MDLA in the
DITSCAP PDO

4. Related Work

For critical software-intensive systems, formal
methods have often been used to provide a priori
evidence that the overall system behavior will be
dependable [8]. Apart from being costly, formal
approaches are not very effective to gain a common
understanding during the early stages of RE. Their
complexity also limits participation of stakeholders
with diverse skills and expertise. Through the
definition of a common language we seek to gather
contributions from several information sources and
provide an early opportunity for analyzing the
emergent system behavior.

Throughout the RE lifecycle several, several
approaches exist to elicit and model dependability
requirements which are primarily driven by illicit
usage or threat scenarios captured using misuse/abuse
cases [35] [1], abuse frames [25], intruder anti-goals
[41], or attacker modeling and analysis [27], but they
uncover only a limited set of dependability attributes
based on the current context of analysis. The use of
general taxonomies [16] [17], attack patterns [30] and
threats [34] to derive security and survivability
requirements can contribute to the refinement and
elaboration of ontological concepts in the PDO.

However, we envision the classification and
categorization of ontological concepts in the PDO to be
primarily based on information gathered from the
problem domain.

The LEL approach [24] was one of the first
initiatives to support the elicitation and representation
of a lexicon based on natural language processing, but
the lexicon itself does not carry any information unless
it is instantiated using a conceptual model. Currently,
the use of a LEL to construct machine understandable
ontologies resulting from the RE process, has been
pointed out in [2]. Recent efforts for ontology based
object-oriented domain modeling have also been
expressed in [14].

We believe that the development of a common
language in the early stages of RE, should not be
restricted to specific modeling notions, constructs, or
techniques as it may become too narrow-focused or
stove-piped. Through our framework, we also strive to
offer the flexibility in choosing the method or
technique for RE that is most suited for the need of the
situation, skills of the people involved or the
uniqueness of the domain.

5. Conclusion and Future Work

Our contributions in this paper can be summarized
as follows. Firstly, we identify specific issues in
engineering quality dependability requirements for
critical software-intensive systems, which motivate the
need for the definition of a common language.
Secondly, we present a comprehensive framework that
integrates novel methods and techniques for the
creation and utilization of a common language during
the early stages of RE lifecycle. Examples presented
throughout the paper demonstrate how several system
models produced within the framework can be used in
harmony to elicit and create a common understanding
through the problem domain concepts, properties and
their relationships. Finally, we introduce the concept of
MDLA, which provides the ability to analyze different
aspects of a requirement based on the information
gathered from various system models available in the
framework.

We believe that the definition of a common
language offers several benefits throughout the RE
lifecycle. It provides an opportunity for the early
identification and prediction of emergent system
attributes required for engineering quality
dependability requirements. It also provides an
integrated environment for the development of
systematic processes of designing dependable systems
and the related metrics and measures, i.e. the Science
of Design of dependable systems. Furthermore, the

To appear in Proceedings of the 13th IEEE International Requirements Engineering Conference (RE ‘05)
Workshop on Requirements Engineering for High-Availability Systems (RHAS), 8/29 – 9/2, Paris, France

7 of 9

definition of a common language can be reused across
multiple systems with support for the
incorporation/traceability of changes in policies,
regulations, functional and non-functional
requirements, and the real-world goals of the system.

As part of our future work we would like to address
the following on-going research objectives: 1)
Systematically identify the emergent properties of the
system based on the evidences collected from various
system models to establish the value of “objects”, and
their influences and interdependencies in the definition
of a common language; 2) Establish metrics and
measures of dependability based on the understanding
and reflected language from various dimensions of a
common language; and 3) Systematically analyze
various system models within our framework to
identify the “objects of interest” that affect
dependability, accuracy, performance, usability,
efficiency, criticality etc.

Acknowledgements: This work is partially supported by the
grant (Contract: N65236-05-P-0597) from the Critical
Infrastructure Protection Center, Space and Naval Warfare
Systems Center, Charleston, SC. USA. The authors
acknowledge the support from Scott West, John Linden, Bill
Bolick, Gail-Joon Ahn and Bill Chu. Finally, the authors
thank Deepak Yavagal, Divya Muthurajan, Raghuram
Gururajan, and Swapnil Brahmankar for their contributions.

6. References

[1] Allenby, K., and Tim K., “Deriving Safety
Requirements Using Scenarios”, In Proceedings of the 5th
International Symposium on Requirements Engineering,
2001, pp: 228-235

[2] Breitman, K.K., and Leite, J., “Ontology as a
Requirements Engineering Product”, In Proceedings of the
IEEE Int’l Requirements Engineering Conference, Mini-
tutorial on Ontology Development, 2003

[3] Brownsword, L. L., Carney, D. J., Fisher, D., Lewis, G.,
Meyers, C., Morris, E. J., Place, P. R. H., Smith, J., and
Wrage, L., “Current Perspectives on Interoperability,”
Technical Report CMU/SEI-2004-TR-009, Carnegie Mellon
Software Engineering Institute, 2004

[4] Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D.,
Seaborne, A., and Wilkinson, K. 2004., “Jena: implementing
the semantic web recommendations,” In Proceedings of the
13th International World Wide Web Conference ACM Press,
New York, NY, 74-83.

[5] Carroll, J. M., “Five Reasons for Scenario-Based
Design”, In Proceedings of the Hawaii Int’l Conf. on
Systems Sciences, IEEE Computer Society Press, Los
Alamitos, California, pp:123, 1999

[6] Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P. D.,
and Rice, J. P., “OKBC: a programmatic foundation for
knowledge base interoperability,” In Proceedings of the
Fifteenth National/Tenth Conference on Artificial
intelligence/innovative Applications of Artificial intelligence,
American Association for Artificial Intelligence, Menlo Park,
CA, 600-607

[7] Coughlan, J., Macredie, D. R., “Effective
Communication in Requirements Elicitation: A Comparison
of Methodologies,” Requirements Engineering, Volume 7,
Issue 2, Jun 2002, Pages 47 – 60

[8] de Groot, A., Hooman, J., Lemoine, M., Gaudiere, G.,
Winter, V.L., and Kapur, D., “A survey: applying formal
methods to a software intensive system”, Sixth IEEE Int’l
Symposium on High Assurance Systems Engineering, 2001,
pp:55 – 64

[9] DoD 8500.1. Information Assurance. Oct. 2002

[10] DoD 8500.2. Information Assurance Implementation.
Feb. 2003

[11] DoD 8510.1-M, “DITSCAP Application Manual”, 2000

[12] DoD Instruction 5200.40, “DoD Information
Technology Security Certification and Accreditation
Process” (DITSCAP), 1997

[13] Ed Skoudis, Counter Hack: A Step-by-Step Guide to
Computer Attacks and Effective Defenses, Prentice Hall PTR,
2001

[14] Evermann, J., and Wand, Y., “Ontology based object-
oriented domain modeling: fundamental concepts”,
Requirements Engineering Journal, Springer-Verlag London
Ltd., 2005

[15] Finkelstein, A., and Sommerville, I., “The Viewpoints
FAQ”, BCS/IEE Software Engg. Journal, Vol. 11(1), 1996

[16] Firesmith, D. G., “Common Concepts Underlying
Safety, Security, and Survivability Engineering”, Technical
Report CMU/SEI-2003-TN-033, Carnegie Mellon Software
Engineering Institute, 2003

[17] Hughes, K.J., Rankin, R.M., and Sennett, C.T.,
“Taxonomy for requirements analysis” Proceedings of the 1st
Int’l Conference on Requirements Engineering, 18-22 April
1994, pp:176 – 179

[18] Jackson, M., “The Meaning of Requirements.” Annals
of Software Engineering, Vol 3, pp: 5-21, Baltzer Science
Publishers, 1997

[19] Kimbell, J. and Walrath, M., “Life Cycle Security and
DITSCAP”, IANewsletter, Vol. 4, No. 2. Spring 2001

[20] Lee, S. W., Gandhi, R. A., and Ahn, G., “Establishing
Trustworthiness in Services of the Critical Infrastructure:
Automating the DITSCAP”, Workshop on Software

To appear in Proceedings of the 13th IEEE International Requirements Engineering Conference (RE ‘05)
Workshop on Requirements Engineering for High-Availability Systems (RHAS), 8/29 – 9/2, Paris, France

8 of 9

Engineering for Secure Systems (SESS05), 27th International
Conference on Software Engineering, May 2005, pp: 43-49

[21] Lee, S. W., Gandhi, R. A., and Ahn, G., “Security
Requirements Driven Risk Assessment for Critical
Infrastructure Information Systems”, To appear in
Proceedings of the Symposium on Requirements Engineering
for Information Security (SREIS 05), RE ’05, Paris, France,
August 2005.

[22] Lee, S.W. and Rine, D.C. Missing Requirements and
Relationship Discovery through Proxy Viewpoints Model.
Studia Informatica Universalis: Int’l. Journal on Informatics,
Vol. 3(3), pp. 315-342, December 2004.

[23] Lee, S.W. and Yavagal, D., “GenOM User’s Guide”.
Technical Report TR-SIS-NISE-04-01, Knowledge Intensive
Software Engineering Research Group, Dept. of Software
and Information Systems, UNC Charlotte, Spring 2004

[24] Leite JCSP, Franco APM. “A strategy for conceptual
model acquisition,” In proceedings of the IEEE international
symposium on Requirements Engineering. IEEE Computer
Society Press, Los Alamitos, CA, pp 243–246, 1993

[25] Lin, L., Nuseibeh, B., Ince, D., Jackson, M, “Using
abuse frames to bound the scope of security problems”, In
Proceeding of the 12th IEEE Int’l Requirements Engineering
Conference, 2004, pp: 354- 355

[26] Liu, L., Yu, E., “Designing Information Systems in
Social Context: A Goal and Scenario Modeling Approach,”
Information Systems. Vol. 29(2), Elsevier, 2003

[27] Liu, L., Yu, E., Mylopoulos, J., “ Security and privacy
requirements analysis within a social setting”, In proceedings
of the 11th IEEE International Requirements Engineering
Conference, 2003, pp: 151-161

[28] McGuinness, D., and van Harmelen, F. (editors), “OWL
Web Ontology Language Overview”, W3C
Recommendation, 10th February, 2004,
http://www.w3.org/TR/owl-features/

[29] McLean, J., and Heitmeyer, C., “High Assurance
Computer Systems: A Research Agenda”, America in the
Age of Information, National Science and Technology
Council Committee on Information and Communications
Forum, Bethesda, 1995

[30] Moore, A. P., Ellison, R. J., and Linger, R. C., “Attack
Modeling for Information Security and Survivability”,

Technical Note CMU/SEI-2001-TN-001, Carnegie Mellon
Software Engineering Institute, 2001

[31] National Institute of Standards and Technology (NIST)
Special Publication 800-12, “An Introduction to Computer
Security: The NIST Handbook,” October 1995

[32] Office of Management and Budget Circular No. A-130,
“Management of Federal Information Resources,” Feb 8,
1996

[33] Rolland, C., and Souveyet, C., and Achour, C. B.,
“Guiding Goal Modeling Using Scenarios”, In IEEE
Transactions on Software Engineering, Vol. 24(12), 1998,
pp:1055-1071

[34] Schneier, B., “Attack Trees: Modeling Security
Threats”, Dr. Dobb’s Journal, December 1999

[35] Sindre, G., Opdahl, A.L., “Eliciting security
requirements by misuse cases”, In Proceedings of the 37th
International Conference on Technology of Object-Oriented
Languages and Systems, 2000, pp:120-131

[36] Sommerville, I., Software engineering, Addison
Wesley; 7 edition, May 10, 2004

[37] Swanson, M. “Guide for Developing Security Plans for
Information Technology Systems,” NIST Special Publication
800-18, 1998

[38] The Integration of Software-Intensive Systems (ISIS)
initiative. Carnegie Mellon Software Engineering Institute,
URL: http://www.sei.cmu.edu/isis/isis-
main.html

[39] van Lamsweerde, A. Willemet, L. “Inferring
declarative requirements specifications from operational
scenarios” IEEE Transactions on Software Engineering, Vol.
24(12), 1998, pp: 1089 – 1114

[40] van Lamsweerde, A., “Goal-oriented requirements
engineering: a guided tour”, In Proceedings of the fifth IEEE
International Symposium on Requirements Engineering,
Aug. 2001 pp:249-262

[41] van Lamsweerde, A., Brohez, S., De Landtsheer, R., and
Janssens, D., “From System Goals to Intruder Anti-Goals:
Attack Generation and Resolution for Security Requirements
Engineering” In Proceeding of Requirements for High
Assurance Systems Workshop (RHAS'03), 11th International
Requirements Engineering Conference (RE'03), 2003

To appear in Proceedings of the 13th IEEE International Requirements Engineering Conference (RE ‘05)
Workshop on Requirements Engineering for High-Availability Systems (RHAS), 8/29 – 9/2, Paris, France

9 of 9

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

