
International Journal of Software Engineering and Knowledge Engineering
© World Scientific Publishing Company

1

ONTOLOGY-GUIDED SERVICE-ORIENTED ARCHITECTURE
COMPOSITION TO SUPPORT COMPLEX AND TAILORABLE

PROCESS DEFINITIONS

SEOK-WON LEE, ROBIN A. GANDHI, SIDDHARTH J. WAGLE

Knowledge-intensive Software Engineering (NiSE) Research Group
Dept. of Software and Information Systems, The University of North Carolina at Charlotte

 Charlotte, NC 28223-0001, USA.
{seoklee, rgandhi, sjwagle}@uncc.edu

http://nise.sis.uncc.edu

Received (7 March 2008)
Revised (Day Month Year)

Accepted (Day Month Year)

Services as abstractions of functionality have enabled the engineering of systems that support well-
defined processes with relative ease. This success leads to aspirations for achieving greater
complexity with the service-oriented paradigm. In particular, we address the case where the process
definition is tailored differently in each instantiation based on negotiations among stakeholders of a
socio-technical context. For such cases the process definition invariably crosscuts the architecture of
a process-support system that composes available services. However, use of pre-defined process
variations may bias the tailoring effort and thus, act against the original motivation of having a
flexible definition. On the other hand, the characteristics of process complexity and tailorability
introduce differences between stakeholder understanding of the process activities and their
manifestation in tool support. We encounter these issues while developing a service-oriented
process-support system for a security Certification and Accreditation (C&A) process. In this paper,
we present our approach to effectively separate the C&A process definition from the architecture of
its process-support system. We employ ontological modeling techniques to explicitly model the
process definition and later expose it as a service to provide weaving rules for dynamically
composing the process-support system architecture at runtime. The feasibility of our approach has
been demonstrated in the design of a service-oriented architecture for a prototype workbench that
supports the Department of Defense Certification and Accreditation Process (DITSCAP).

Keywords: Service-oriented architecture, Aspect-oriented design, Ontology-based domain modeling,
Dynamic architecture composition, Model-driven engineering, Certification and Accreditation.

1. Introduction

Service Oriented Architecture (SOA) is enabled through an interconnected set of
services, each accessible through standard interfaces and messaging protocols [31] [37].
Services as first class entities offer functional abstractions that are extensible, loosely-
coupled, and reusable. These characteristics of services drive the vision of a flexible and
distributed infrastructure that supports on-demand business needs. For example, using
web services [17] abstract process workflows can be built by simply orchestrating
interactions among several distributed services over the Internet using specifications such
as the Business Process Execution Language (BPEL) [25]. However, this architectural

Accepted on July 14, 2008

Seok-Won Lee, Robin A. Gandhi, Siddharth J. Wagle

2

style assumes the existence of an abstract and well-defined process workflow model and
ignores the reality of organizational and human influence on the definition and execution
of a process [10]. These influences induce a complex flow of artifacts between social and
technical worlds separated at the boundary of a designed process-support system.
Furthermore, a situation commonly arises where the process definition is tailored
differently in each of its instantiation based on the negotiations among stakeholders in a
socio-technical context. For such cases the process definition invariably crosscuts the
architecture of a process-support system that composes available services. However, use
of pre-defined process variations to address these issues may bias the tailoring effort and
thus, act against the original motivation of having a flexible definition. Therefore, we
outline important requirements for a SOA to support a complex and tailorable process:
• The SOA should be composed in accordance with the tailoring effort of the process

definition
• The SOA should maintain a chain of evidence for process fulfillment in a socio-

technical environment where complete automation is not desired
• The SOA should facilitate stakeholder understanding of the process definition and its

realizations through the process-support system
To fulfill these key requirements, the process definition that drives the composition of

services in a SOA needs to be “framed” and separated based on a knowledge-intensive
approach [6]. This approach emphasizes “services” based on deep representation of the
process definition itself that provide intelligent assistance to understand the coordinated
interactions between stakeholders and the process-support system, as well as the guidance
to the composition of the required architecture. Based on this philosophy, in this paper we
outline our approach to design a service-oriented process-support system for a complex
and tailorable Certification and Accreditation (C&A) process.

Security C&A process is defined as the comprehensive evaluation of the technical
and non-technical security features of a software system to establish the extent to which a
particular design and implementation meets a set of specified regulatory requirements
[14]. However, the resources required for understanding the C&A process and resources
for carrying out its activities are usually scattered in multiple documents/sources at
different levels in the organizational hierarchy. Therefore, effective execution of the
C&A process demands a unified access and view to common resources such as the
organizational policies, certification requirements, system-security information, and other
artifacts. To this end, services provide highly distributed and reusable ways to aggregate,
abstract and disseminate access to these common resources in the design of a process-
support system for C&A (Section 4).

C&A is a long and exhaustive process based on a set of activities defined by
regulations [27]. Infrastructure-wide C&A processes usually recommend a risk based
approach to come up cost-effective security solutions in the context of a particular
software system. Therefore, tailorability of the C&A process is fundamental for its
applicability into the developmental and operational processes of diverse software
systems deployed in the organizational infrastructure. The C&A process is designed to be

Accepted on July 14, 2008

Ontology-Guided Service-Oriented Arch. Composition to Support Complex & Tailorable Process Definitions

3

tailored such that it can be practiced for any system regardless of the system status in its
life cycle (inception, development, deployed, etc.) or shift in program strategy (grand
design, incremental, or evolutionary) [13]. C&A process evolution/improvement is also
continuously motivated by factors such as the ever increasing complexities of
organizational software systems; changes in the perceived types and levels of threats; or
as the applicable threats change over time. In addition, several organizational and human
aspects are involved in engineering the C&A process execution that fits the needs of a
particular software system and its operational environment. The key roles involved in
negotiating the C&A process definition are representative participants from the diverse
areas in the organization. The characteristics motivate the design of the architecture for a
C&A process-support system that effectively addresses the complexity as well as the
need for tailorability of the process definition.

To address these needs, we combine techniques in ontology-based domain modeling
[54] [43] and aspect-oriented design [18] [40] [36] to modularize the process definition as
a human and machine understandable representation in a larger service-oriented design
solution. Specifically, we capture the process definition as an ontological model, called
the “process ontology” (Section 5). The purpose of the process ontology is to maintain
explicit traceability between the purpose of C&A activities and the available software
artifacts (e.g. services, user interface components, etc.) of a process-support system. To
achieve this, the process ontology is a hierarchical decomposition of high level strategic
C&A goals into specific tasks supported by the process-support system. Each task in the
process ontology is associated with “architectural weaving rules” that specify what
service compositions are necessary in the process-support system architecture when
certain tasks are encountered during the process execution (Section 5.2). To demonstrate
the feasibility of our approach, we provide examples from the design of the architecture
of a prototype workbench [46] that supports the Department of Defense security C&A
Process (DITSCAP) [14].

The rest of the paper is organized as follows. Section 2 provides background on the
relevant aspects of our previous research while motivating the use of services to support
the C&A process. In section 3, we provide a conceptual overview of a service-oriented
workbench architecture for supporting the C&A process. In section 4, we elaborate on the
development of distributed and reusable service definitions to support C&A process
tasks. Section 5 outlines the methodological steps involved in the development of a C&A
process ontology, followed by the demonstration of its usage for architectural
composition of the workbench in section 6. Section 7 presents some related work
followed by contributions and future work in section 8.

2. Background and Motivation

C&A processes assess the level of compliance of a software system against a set of
baseline security requirements. These requirements are usually scattered across many
natural language regulatory documents and their compliance evidences are gathered from
heterogeneous sources based on domain expertise of those conducting the C&A process.

Accepted on July 14, 2008

Seok-Won Lee, Robin A. Gandhi, Siddharth J. Wagle

4

Consequently, C&A processes often lack consistent and comparable results and fail to
provide adequate information for authorizing officials to understand security risks and
make informed decisions [51] [33]. To address these issues, we discuss our previous
research efforts towards modeling regulatory security requirements. Our techniques [43]
[41] have been applied to model the requirements for the DITSCAP [14] with promising
preliminary results [38] [42] [44] [45].

2.1. Regulatory Security Requirements Modeling

Our goal to model regulatory security requirements is to facilitate a common
understanding of the complex constraints imposed by them on software behavior in a
socio-technical environment. Therefore, we have applied the Ontology-based ACTive
Requirements Engineering (Onto-ActRE) framework [43] for modeling and analyzing
requirements specified in regulatory documents by utilizing the synergy among multiple
requirements modeling philosophies. The Onto-ActRE approach to ontology
development is primarily problem driven; i.e. ontology development is guided based on
the problem solving notions of goals, scenarios, and viewpoints (requirements
engineering techniques). Driven by these modeling philosophies, we extract ontological
concepts from natural language regulatory documents as well as domain experts to help
in classifying and categorizing regulatory security requirements from multiple
dimensions [44]. The result of applying the Onto-ActRE framework is a Problem Domain
Ontology (PDO), which includes the followings: 1) a hierarchical requirements domain
model of various requirement types that categorize regulatory security requirements; 2) a
viewpoints hierarchy that models different perspectives from related stakeholders of a
regulatory security requirement; 3) a C&A process goal hierarchy with leaf-node
scenarios to gather user/system criteria for regulatory security requirements applicability;
4) domain specific taxonomies with ontological concepts in the dimensions of threats,
countermeasures, vulnerabilities, and assets related to regulatory security requirements
for understanding risks associated with non-compliance; and 5) interdependencies among
the concepts modeled in the PDO. Further details about these models are described in
[44] [45] [48]. Semantics of a requirement is now reflected by its relationships with other
concepts in the PDO. As an example, Fig. 1 shows the DITSCAP requirement of
“Boundary Defense” [15], its related domain concepts and their methods of
identification.

Support for ontological domain modeling for the Onto-ActRE framework is provided
by the GENeric Object Model (GenOM) [41] toolkit. GenOM inherits the theoretical
foundation of the frame representation and is compatible with the OKBC specification
[52] for knowledge representation and sharing.

2.2. What services are necessary for a C&A process-support system?

Regulatory guidance documents (e.g. the DITSCAP Application Manual [13]) specify
the C&A process at an abstract level to maintain general applicability across diverse

Accepted on July 14, 2008

Ontology-Guided Service-Oriented Arch. Composition to Support Complex & Tailorable Process Definitions

5

software systems in an organizational infrastructure. However, such abstract specification
leaves the C&A process definition open to subjective interpretation. Stakeholders often
find the C&A process hard to understand and trace its implementations in practice back
to high level strategic goals or justify its rational and repeatability. The complexity of the
C&A process and its tailorability further raise concerns for the gap between stakeholders’
understanding of the process definition. Therefore, it is important for any C&A process-
support system to promote stakeholders’ awareness about the process activities that are
partially or fully supported. Fulfilling these needs in a SOA emphasizes the need for
services that are based on deep representation of the C&A process definition itself. Such
a service will help to maintain a chain of evidence for process fulfillment in a socio-
technical environment where complete automation is neither desired nor possible.

In addition to process guidance, the large spread of C&A activities requires services
that provide a uniform access and view to compliance evidences from heterogeneous
sources (e.g. domain experts, task reports, software assurance tools, etc). Design of
services that facilitate the aggregation, recall and analysis of artifacts from data sources
that cannot be anticipated in advance are necessary for an effective and scalable C&A
process-support system. In the following section, the conceptual architecture of a C&A
process-support system based on services is presented.

3. A Conceptual C&A Workbench Architecture based on Services

Currently, the notion of services is limited to provide functional abstractions. The process
definition then provides guidance on how to compose the available services. However,
the process itself has not been captured as a “service” due to its lack of functional
characteristics. Consequently, process definitions do not use the same infrastructure and
frameworks that have been built to design and support flexible services. It is not
surprising that current SOA implementations require additional languages to model and

Name: Boundary Defense

Information Assurance
Service: Confidentiality

Description: Boundary defense
mechanisms to include firewalls
and network intrusion detection
systems (IDS) are deployed at
the enclave boundary to the wide
area network, at layered or
internal enclave boundaries and
at key points in the network, as
required. All Internet access is
proxied through Internet access
points that are under the
management and control of the
enclave and are isolated from
other DoD information systems
by physical or technical means.

C&A PROCESS GOAL:
DEFINE SYSTEM

INTERFACES
(DOMAIN EXPERTISE)

VULNERABILITY:
INTERNET ACCESS NOT

PROXIED
(RELATED

COUNTERMEASURE)
THREAT:

UNAUTHORIZED
NETWORK TRAFFIC

(DOMAIN
EXPERTISE)

THREAT:
UNAUTHORIZED

INTERNET ACCESS
(DOMAIN

EXPERTISE)

VULNERABILITY:
USE OF

TEMPERED SOFTWARE
(RELATED

REQUIREMENT)

REQUIREMENT:
OUTSOURCED

APPLICATION SUBJECT
TO DoD ENCLAVE

BOUNDARY DEFENSE
(REQUIREMENTS

CROSS-REFERENCE)

REQUIREMENT:
ACQUISITION
STANDARDS

(REQUIREMENTS
CROSS-REFERENCE)

VIEWPOINT:
CONFIDENTIALITY

(KEYWORD ANALYSIS)

VULNERABILITY:
FIREWALL AND IDS

MIS-CONFIGURATION
(RELATED

COUNTERMEASURE)

ASSET:
ENCLAVE

(KEYWORD ANALYSIS)

COUNTERMEASURE:
MANAGED INTERNET
ACCESS CONTROL

POINTS (DMZ)
(KEYWORD ANALYSIS)

COUNTERMEASURE:
INSTALL FIREWALLS & IDS

AT KEY POINTS IN THE
ENCLAVE WITH APPROPRIATE

CONFIGURATIONS
(KEYWORD ANALYSIS)

ASSET:
DoD INFORMATION

SYSTEM
(KEYWORD ANALYSIS)

VIEWPOINT:
ADMINISTRATOR
(STAKEHOLDER

RESPONSIBILITY)

Fig. 1. A DITSCAP requirement and its relationships with other domain concepts in the PDO [38]

Accepted on July 14, 2008

Seok-Won Lee, Robin A. Gandhi, Siddharth J. Wagle

6

interpret process definitions that compose available services and orchestrate their
interactions. In this paper, we describe a knowledge-intensive approach to expose the
process definition itself as a service (Section 5). A “process service” provides
abstractions of the process definition that guides the composition of other functional
services in a SOA. In effect, the process service, a deep knowledge representation of the
process itself, modularizes the process related cross-cutting concerns that are scattered
throughout the SOA. Based on the aspect-oriented design paradigm, such modularized
cross-cutting concerns are called aspects. Hence, we further qualify the process service as
a “process-aspect knowledge service”.

With the existence of a process-aspect knowledge service, a SOA is able to maintain
a clear separation between: 1) the data and control; and 2) the static and dynamic
software artifacts in its architecture. A conceptual overview of the information flow that
leads to the C&A process-support workbench based on such an architectural style is
shown in Fig. 2.

The stakeholders practicing the C&A process (e.g. the certifier, certification team,
user representative, etc.) actively influence the definition and design of the software
artifacts that provide access to the heterogeneous data sources required for conducting
C&A tasks. These software artifacts support the collection, organization, retrieval and
analysis of compliance evidences gathered from the software system being certified. The
software artifacts include the designed services that provide access to compliance
evidences based on a rich classification and categorization of domain concepts in the
PDO. As a result, we further qualify these services as “knowledge services” in Fig. 2. The
knowledge services (Section 4) are designed to be consumed by “process-support

DYNAMIC

S: KNOWLEDGE SERVICE

A: ASPECTUAL KNOWLEDGE SERVICE

PC: PROCESS-SUPPORT COMPONENT

r : ARCHITECTURAL WEAVING RULES

PROCESS-ASPECT
KNOWLEDGE SERVICE

A

KNOWLEDGE
SERVICES

S1 S2 S3 Sn…..

…..

DYNAMIC ARCHITECTURE COMPOSITION

Task 1 Task 2 Task 3 Task k

STATIC

PROCESS-SUPPORT
COMPONENTS (RICH CLIENTS)

…..PC1 PC2 PC3 PCm

RUNTIME ENVIRONMENT

PROCESS EXECUTION POOL

WORKBENCH
TASK

…..…..

CONTROL DATA

C&A PROCESS TAILORING
(AUTHORITIES)

C&A PROCESS AUTOMATION
(DOMAIN EXPERTS/ANALYST)

S2 S3

PC3

S1 S2

PC5

S2 S3

PC1

S3

PC4

S1

PC3

r2r1 r3 r4 r5 r6 r n-1 r n

LEGEND

Consumed by

Influence
Definition and

Design

STAKEHOLDERS
SOFTWARE
ARTIFACTS

RESOURCE CONSUMER

RELATIONSHIPS SOFTWARE ARTIFACTS

Fig. 2. Conceptual Overview of the C&A Workbench Architecture

Accepted on July 14, 2008

Ontology-Guided Service-Oriented Arch. Composition to Support Complex & Tailorable Process Definitions

7

components” (Section 5.2.1), which are software artifacts that allow several analytical
operations to be performed on the compliance evidences.

Stakeholders who negotiate the C&A process definition based on the needs of a
particular system and organization actively influence the definition and design of the
software artifacts that provide control information for process execution. To this end, the
authorized C&A officials (e.g. the Designated Approving Authority (DAA) and the
acquisition organization Program Manager) consider various factors such as the mission
criticality, software system lifecycle strategy, and many others to negotiate the C&A
process definition and the level of effort required. These negotiations help identify the
high-level C&A goals which are eventually satisfied by tasks supported through the
workbench. The construction of a process ontology captures this knowledge in a
hierarchical manner using ontological domain modeling techniques (Section 5). The
process ontology associates specific tasks with “architectural weaving rules” (Section
5.2.2) that compose knowledge services for consumption by process-support components
during process execution. To support such workbench architecture configuration at
runtime, the process ontology and related architectural weaving rules are exposed through
operations defined by the process-aspect knowledge service (Section 6), shown in Fig. 2.

The workbench architecture can also be logically separated into static and dynamic
software artifacts. The static software artifacts of the workbench include the knowledge
services (data); highly modularized and reusable process-support components (to access
and analyze data); and the process-aspect knowledge service (control). The dynamic
software artifacts are created at runtime using a composition algorithm (Section 6.1) by
selection and activation of appropriate static software artifacts.

The C&A workbench architecture is in essence composed based on the representation
of domain concepts from the human and machine understandable ontologies in the PDO,
whose structure and content is influenced by multiple stakeholders and regulatory texts.
The contents of the compliance evidences (instance space) gathered might change; but,
the domain concepts in the ontology (conceptual space) that classify and categorize them
are relatively stable. Therefore, the availability of evidences from heterogeneous and
unknown sources does not warrant a change in the services that provide access to them.
In the following sections, we discuss parts of the conceptual workbench architecture in
further detail.

4. Use of Services to encapsulate Knowledge Models

The domain concepts modeled in the PDO provide placeholders to gather information
regarding the software system from user representatives, certification analysts, operating
manuals, plans, architecture diagrams, automated network-based information discovery
toolkits and many other sources [44]. Therefore, to accomplish the tasks in a C&A
process, the PDO as an exhaustive classification and categorization of C&A requirements
is a good candidate to be exposed through services. These services will allow flexible
aggregation of data from heterogeneous sources and then help to disseminate it through
process-support components that interface with domain experts.

Accepted on July 14, 2008

Seok-Won Lee, Robin A. Gandhi, Siddharth J. Wagle

8

4.1. Defining Knowledge Services for the C&A process

From experiences in the web services domain, it has been observed that services
exposed as a collection of well-defined functionality are more flexible in terms of their
usage by other services or tools [1]. Similarly, exposing the PDO knowledge models
through services involves determining well-defined collections of functionalities to
support knowledge-intensive C&A tasks. The role of these services is to aggregate the
fundamental methods provided by a knowledge base such as edit, browse, access, query,
infer, and visualize ontological models to build richer functional abstractions that are
relevant while performing the C&A tasks. We refer to these functional abstractions as

Fig. 3. A Process-support Component in the C&A Workbench and the Requirements Domain Model (RDM)
Knowledge Service Interface written in Java to support the DITSCAP activity of determining applicable C&A
requirements for a particular software system.

Accepted on July 14, 2008

Ontology-Guided Service-Oriented Arch. Composition to Support Complex & Tailorable Process Definitions

9

Knowledge Services. The knowledge services are eventually consumed by process-
support components. The process-support components are rich clients that engage a
certification analyst or other stakeholders in interactive analytical sessions to produce
C&A artifacts or analyze evidences gathered from the target system.

As an example, consider the task of “select applicable C&A requirements” for a
system subject to the DITSCAP. Following a manual approach, a certification analyst is
expected to sift through numerous regulatory documents evaluating the applicability of
requirements specified in natural language. In contrast, the Requirements Domain Model
(RDM) of the PDO provides a rich classification and categorization of regulatory
requirements in the DITSCAP domain. The RDM also includes a well-designed
requirements applicability questionnaire [44] whose answer options prune the
requirements search space to determine the set of requirements applicable to a particular
system. Now, to effectively support the task of “select applicable C&A requirements,” the
fundamental knowledge base operations upon the RDM are combined to provide
functional abstractions that are exposed as a knowledge service. As an example, Fig. 3
Label 1 shows a partial RDM knowledge service interface with operations that abstract
the functionality necessary for the task of “select applicable C&A requirements”. Fig. 3
Labels 2 through 5 depict the process-support components that use these functional
abstractions to present requirements applicability questionnaires to a certification analyst.

Other knowledge services in the DITSCAP domain expose the classification and
categorization of the following concepts in the PDO associated with security
requirements: 1) viewpoints; 2) C&A process goals; and 3) various risks components
(threats, assets, countermeasures, vulnerabilities). Fig. 4 provides a conceptual overview
of these knowledge services defined to expose the models of the PDO. The knowledge
services build rich functional abstractions upon the OKBC [52] compliant APIs
supported by our knowledge base (GenOM).

REQUIREMENTS
DOMAIN
MODEL

VIEW
POINTS

GOALS NETWORK
BASED

INFORMATION
DISCOVERY

KNOWLEDGE
SERVICES

SPECIALIZATION AND COMPOSITION OF OPERATIONS

DITSCAP
PROBLEM
DOMAIN

ONTOLOGY
THREATSASSETS VULNER-

ABILITIES
COUNTER-
MEASURES

S1 S2 S3 S4 S5 Sn

GenOM APIs (OKBC COMPLIANT)

… …S6

C&A PROCESS SUPPORT COMPONENTS AND TOOLS

Fig. 4. Knowledge Services defined to support the DITSCAP

Accepted on July 14, 2008

Seok-Won Lee, Robin A. Gandhi, Siddharth J. Wagle

10

4.1.1. The Knowledge Service Interface definition

A service interface represents a contract/agreement that sets the expectations for the
collaborating entities [37]. Furthermore, for simplified usage, the service interface should
represent well-defined and abstract collection of functionality that resembles the logical
units of operations required to execute process tasks. However, a balance should be
maintained between achieving such abstraction and allowing flexibility for future
extension and evolution of services. To address this issue, we perform an incremental
aggregation of the operations supported by the knowledge base APIs at different levels of
granularity while constructing the definition of a knowledge service interface. A gradual
and layered aggregation of operations allows the right level of abstraction to be
determined rationally rather than relying on subjective intuition.

As an example of this design philosophy, consider the most fine-grained operations
that are provided by the knowledge base APIs (OKBC compliant) to edit, browse, access,
query, infer, and visualize ontological models as shown in Fig. 5.
At the next level of granularity, atomic operations specialize generic operations based on
the domain concepts defined in the PDO. For example, to navigate a hierarchical
collection of categories in the PDO requires the definition of atomic operations such as
“get all categories that are subclasses of a given category”. In the next level of
abstraction, the atomic operations are composed into higher-level composite operations
with additional business logic (as glue) for providing functionality required to achieve
process-dependent tasks. For example, “select applicable requirements” operation is an
aggregate of several atomic operations to select the requirements applicable to the target
system based on the answers to requirements applicability questions during the C&A
process. Finally, the knowledge service interface is built by a selective aggregation of
composite as well as atomic operations such that intuitive logical units of operations are
exposed through the knowledge service. Such incremental aggregation of functionality
ensures a combined impact of the domain concepts in the PDO as well as process
activities on the definition of the knowledge service interface. A partial knowledge
service interface definition is shown in Fig. 3 (Label 1).

COMPOSITE OPERATIONS

ATOMIC OPERATIONS

KNOWLEDGE BASE APIs (OKBC COMPLIANT)

PROBLEM
DOMAIN

ONTOLOGY

KNOWLEDGE SERVICE INTERFACES

Fig. 5. Aggregation of Functionalities for Knowledge Service Interface definition

Accepted on July 14, 2008

Ontology-Guided Service-Oriented Arch. Composition to Support Complex & Tailorable Process Definitions

11

4.1.2. Deploying, Discovering, and Invoking Knowledge Services

In the DITSCAP domain, integrity is an important QoS factor for knowledge services
that support C&A activities of a critical software system. We define integrity of
knowledge services as the accurate and orderly delivery of messages to service
consumers, i.e., the components of the workbench which facilitate decision making of
stakeholders in the C&A process. To address these integrity requirements we apply
appropriate design patterns while deploying knowledge services for the C&A workbench.
Specifically, for the deployment of knowledge services, we use the Factory and Singleton
design patterns [16] that are at the core of several SOA technologies.

As shown in Fig. 6, we define a “Knowledge Factory” class that aggregates various
knowledge service interfaces and provides reference to a singleton instance of the
knowledge service implementation to a consumer/requestor. Essentially, the “Knowledge
Factory” class is a means to aggregate concrete singleton knowledge service endpoints
while providing the service consumers with a common gateway to leverage the
functionality offered by the knowledge services. The “Knowledge Factory” class
parameterizes each service endpoint with the service name/URI to make them
discoverable at runtime.

5. Modeling the Process Ontology

In this section, we discuss the methodological steps to build a process ontology for a
C&A process starting from its specification in regulatory documents. We use ontology
development as a way to capture the rationale of the process and its tailoring effort for a
particular instantiation. For the DITSCAP, the process definition is an abstract
specification of multiple interconnected workflows required to produce artifacts that
satisfy the strategic C&A goals for the target system. A workflow is an ordered collection
of related C&A activities. Each activity in a workflow can be further decomposed into
atomic tasks that are carried out in practice. Although well-defined from the business

Knowledge Factory

Knowledge Service 1
Implementation

Knowledge Service 1
Interface

THE KNOWLEDGE FACTORY
PROVIDES REFERENCES TO THE

REQUESTED SERVICE ON DEMAND

Knowledge Service 2
Implementation

Knowledge Service 2
Interface

Knowledge Service n
Implementation

Knowledge Service n
Interface

… …

… …

… …

SINGLETON INSTANCES OF KNOWLEDGE SERVICES
Fig. 6. Use of Factory and Singleton Design Patterns to Deploy, Discover and Invoke Knowledge Services

Accepted on July 14, 2008

Seok-Won Lee, Robin A. Gandhi, Siddharth J. Wagle

12

mission aspect, the abstract C&A process model can be instantiated in many ways to fit
the characteristics of the system being certified [13]. To this end, our approach serves as
a way to systematically understand and establish an explicit agreement of the process
definition among stakeholders.

5.1. Building an Ontological Process Model

5.1.1. Operationalization of the Process Goals

To create explicit traceability between the strategic C&A process goals and the tasks that
satisfy the goals in practice, we build the process ontology following a hierarchical goal
decomposition approach. Specifically, we adopt the goal decomposition technique in
requirements engineering [53] to operationalize the high level process goals into specific
process activities at different levels of abstraction. We use DITSCAP to demonstrate our
approach while suggesting potential sources for process ontology construction. As an
example, Fig. 7 shows a partial process ontology of the DITSCAP and its concepts at
different levels of abstractions extracted from regulatory documents.

The DITSCAP application manual [13] is a comprehensive and authoritative
document which provides implementation guidance to standardize the C&A process
throughout the United States Department of Defense (DoD). Based on this document, the
high level goals for DITSCAP are to generate a comprehensive system definition
(security plan); perform risk assessment; and maintain operational system security. These
goals can be further decomposed into more specific goals as prescribed by the process
workflows in the DITSCAP application manual [13]. For example, the DITSCAP
“Perform System Registration” goal is operationalized by a workflow, which is a
grouping of activities that starts with the “Mission/System Description” activity and is
finalized by the “Draft SSAA” activity, as shown in Fig. 7 (Level 2).

At the next level of abstraction, each process activity is further operationalized by
atomic tasks. An atomic task cannot be operationlized further and it needs to be executed
either manually or through automated tool support in the workbench. Fig. 7 (Level 3)
shows the atomic tasks that operationalize the activities defined in the previous level.

5.1.2. Understanding Process Automation

A process-support system has to support interactivity and co-operation between
automated and manual tasks in a socio-technical environment. The automated tasks may
differ in granularity and sequence compared to their manual counterparts. Therefore, to
provide a clear understanding of the process automation areas as well as the
interdependencies with other manual activities, the tasks automated by the workbench
should be explicitly traceable to the atomic tasks (Fig. 7 (Level 3)) to which they
contribute. Such traceability provides justification of adhering to the process definition
and increases awareness of high-level process goals while conducting specific tasks [49].
It also facilitates later interpretation and re-composition of gathered process artifacts.

Accepted on July 14, 2008

Ontology-Guided Service-Oriented Arch. Composition to Support Complex & Tailorable Process Definitions

13

To ease the process of achieving end-to-end traceability, the automation areas of the
C&A workbench are logically divided into workbench design objectives. The workbench
design objectives group workbench tasks, which in turn contribute to accomplish the
atomic tasks. Fig. 7 (Level 4) provides a high level overview of this modeling activity.

RISK ANALYTICSC&A PROCESS
ANALYTICS

C&A DOCUMENTATION
ANALYTICS

UNDERSTANDING
C&A REQUIREMENTS

COMPLIANCE EVIDENCE
GATHERING

WORKBENCH DESIGN
OBJECTIVES AND
WORKBENCH TASK
INSTANCES (LEVEL 4)

WORKBENCH DESIGN
OBJECTIVES (DOTTED
CIRCLES) LOGICALLY
GROUP THE
WORKBENCH TASKS

THE WORKBENCH
TASKS (SOLID BOXES)
ARE ASSIGNED AS
INSTANCES OF THE
ATOMIC TASKS IN THE
PREVIOUS LEVEL

RELATIONSHIPS
AMONG THE
WORKBENCH TASKS
PROVIDE
SEQUENCING
INFORMATION
DURING EXECUTION

EACH WORKBENCH
TASK PROVIDES
GUIDANCE FOR
DYNAMIC
AGGREGATION OF
PROCESS SUPPORT
COMPONENTS AND
KNOWLEDGE
SERVICES

THE Onto-ActRE
FRAMEWORK

PROBLEM DOMAIN
ONTOLOGY

C&A EXPERTS

- NAME: GATHER REQUIREMENTS

APPLICABILITY CRITERIA

- DESCRIPTION: ELICIT ANSWER REPONSES

FOR GATHERING REQUIREMENTS

APPLICABILITY CRITERIA

-DYNAMIC COMPOSITION ASPECT RULE:

- APPLICABILITY QUESTIONNAIRE RULE: r1

PREDECESSOR_OF

SUCCESSOR_OF

- NAME: SELECT APPLICABLE REQUIREMENTS

- DESCRIPTION: THE SELECTED ANSWER

REPONSES AUTOMATICALLY PRUNE THE

SEARCH SPACE TO IDENTIFY APPLICABLE

REQUIREMENTS

- DYNAMIC COMPOSITION ASPECT RULE:

- SELECT APPLICABLE REQUIREMENTS RULE: r2

PROBLEM SOLVING
ENGINES AND

METHODOLOGIES
Concept Explanation: The requirements
of Logical Access Control, Personnel
Screening and Network/Internet Access
Control are driven by the Threat of
Employee Related Unauthorized Access as
sub-class of Unauthorized Activities to the
Enclave within a DoD Information System

Concept Explanation: The
requirements of Enclave
Boundary Defense and
Network/Internet Access
Control are driven by the
Threats of Unauthorized
Internet Access and
Unauthorized Network Traffic
as sub-classes of Unauthorized
Activities to the Enclave within
a DoD Information System

PREDECESSOR_OF

SUCCESSOR_OF

P
R

E
D

E
C

E
S

S
O

R
_

O
F S

U
C

C
E

S
S

O
R

_
O

F

instance of
instance of

instance of

instance of

instance of

instance of

1 2

Task 1

S1

PC1

r1

Task 2

r2

S1

PC2

GATHER
REQUIREMENTS COMPLIANCE

CRITERIA

4

SERVICE
S1

PC1
Task 4

S1

r5

PC1

UNDERSTAND APPLICABLE
REQUIREMENTS BASED ON
WELL-DEFINED ATTRIBUTES

3

Task 3

S1

r3

S2

PC3

r4

PRACTICE DITSCAP
C&A PROCESS

GENERATE SYSTEM
DEFINITION

C&A
PREPARATION

PERFORM SYSTEM
REGISTRATION

PERFORM C&A
NEGOTIATIONS

MISSION/SYSTEM
DESCRIPTION ENVIRONMENT

DESCRIPTION

DEFINE OPERATIONAL
ENVIRONMENT

GENERATE
RISK & THREAT
DESCRIPTION

EVALUATE
DEGREE OF RISK

SYSTEM
ARCHITECHTURE

DESCRIPTION

PERSONNEL

required to
required to

required to

required to

starts

part of part of

part of

part of

part of part of part of

DRAFT
SSAA

finalizes

C&A PROCESS
GOALS

OTHERS……….

required to

C&A PROCESS
GOALS (LEVEL 1)

PROCESS-DRIVEN
WORKFLOWS
(LEVEL 2)

ATOMIC TASKS
(LEVEL 3)

C&A PROCESS
GUIDANCE

DOCUMENTS
(e.g.: DITSCAP
APPLICATION

MANUAL)

OTHER
RELATED

DOCUMENTS
(e.g.: MINIMAL

SECURITY
CHECKLISTS)

AVAILABLE
RESOURCES

GOAL
OPERATION-
ALIZATION

(How?)

RATIONAL

(Why?)

IDENTIFY
SYSTEM SECURITY
REQUIREMENTS

DEFINE
THREATS

HIGH LEVEL STRATEGIC
OBJECTIVES BEHIND
PERFORMING C&A ARE
IDENTIFIED AT THIS LEVEL

THE C&A
PROCESS-DRIVEN
WORKFLOWS
IDENTIFIED AT THIS
LEVEL OPERATIONALIZE
THE HIGH LEVEL
STRATEGIC OBJECTIVES

ATOMIC TASKS
IDENTIFIED AT THIS
LEVEL OPERATIONALIZE
EACH ACTIVITY IN THE
PREVIOUS LEVEL. EACH
TASK REQUIRES ACCESS
TO DIVERSE RESOURCES
THROUGHOUT THE
SOFTWARE LIFECYCLE

FACITLITY
DESCRIPTION

PHYSICAL
SECURITY

AMINISTRATIVE
SECURITY

MAINTENANCE

TRAINING

IDENTIFY
HARDWARE

IDENTIFY
FIRMWARE

DEFINE
SYSTEM

INTERFACES

IDENTIFY
DATA FLOWS

IDENTIFY
ACCREDITATION

BOUNDARY

IDENTIFY
SOFTWARE

SELECT
APPLICABLE

REQUIREMENTS

EVALUATE
SYSTEM

COMPLIANCE

IDENTIFY
POTENTIAL
THREATS

DESCRIBE
OPERATING

ENVIRONMENT

part of

part of

part of part of part of

part of

part of

part of

Fig. 7. Modeling Workbench Tasks as Instances of Process Workflow Tasks

Accepted on July 14, 2008

Seok-Won Lee, Robin A. Gandhi, Siddharth J. Wagle

14

Many-to-many mappings between the workbench tasks instances and the atomic tasks are
the result of differences in the level of granularity and/or sequence among them. For
example in Fig. 7, the workbench task labeled (4 in Level 4) contributes to several atomic
tasks in Level 3; whereas, the tasks labeled (1, 2 and 3 in Level 4) all contribute only to
single “Select Applicable Requirements” atomic task in Level 3.

The workbench tasks maintain explicit interdependencies among them as
predecessors and successors of each other to provide sequencing mechanism during user
interaction with the workbench. For example in Fig. 7, the task “Gather Requirements
Applicability Criteria” (Label 1) is a predecessor of the task “Select Applicable
Requirements” (Label 2), to first gather the requirements applicability criteria from the
certification analyst before choosing the applicable requirements.

5.2. Modeling a Workbench Task

The process ontology development until now focused on the decomposition of high-level
process goals to yield a set of workbench tasks for automation. This conceptual
decomposition has also driven the effort to tailor the generic C&A process based on
factors such as the mission criticality; software system lifecycle strategy (waterfall,
spiral, etc.); or the stage of the software system lifecycle in which the certification
activities are initiated. The next phase of the process ontology development focuses on
modeling the parameters that facilitate dynamic architectural compositions in a SOA
based on the agreed upon process definition. These parameters are modeled as the
architectural weaving rules that guide the assembly of process-support components with
available knowledge services.

As an example, in Fig. 7, the workbench task of “Select Applicable Requirements”
(Level 4, Label 2) is associated with an architectural weaving rule “r2” that configures
the process-support component “PC2” to consume the knowledge service “S1” when the
C&A process execution reaches that task. To understand these rules, we first discuss the
design of process-support components as consumers of knowledge services in the
workbench. Process-support components are essentially rich clients that allow several
analytical operations to be performed by utilizing the categorization and classification of
compliance evidences retrieved through knowledge services.

5.2.1. Process-support Component Design

To promote reuse and reduce coupling of process-support components across available
services, we have employed several best design practices and patterns in component
design [3]. To consume available services, a process-support component requires
contractually specified interfaces as well as agreed upon terminology to share a context
of assumptions between them [7]. However, building process-support components
limited to the specification of a single service interface prevents the possibility of their
reuse. In addition, the component interfaces have to adhere to the granularity of the
service interfaces. To address these issues, we define service connector types as further

Accepted on July 14, 2008

Ontology-Guided Service-Oriented Arch. Composition to Support Complex & Tailorable Process Definitions

15

classification/categorization of the operations supported by a service interface based on
their homogeneity (i.e. relevance to a particular domain concept) or group membership
for a particular task. In effect, process-support components programmed to accept service
connector types can be parameterized with different but conceptually similar services.

Let us consider an example in the context of the DITSCAP to further understand the
use of service connector types. The RDM knowledge service, as discussed in Fig. 3 and
Section 4.1, provides operations to access hierarchical requirements applicability
questionnaires that determine the applicability of regulatory requirements to the system
being certified. In addition, the RDM knowledge service provides operations to access
non-hierarchical (but categorized) requirements compliance questionnaires to gather
compliance evidences for the applicable requirements. Therefore, to design a generic
questionnaire process-support component (for presenting questions and gathering
evidences), we split the operations supported by the RDM knowledge service into two
separate “questionnaire service connector types”, which handles both types of
questionnaires. Essentially, a service connector type acts as an “abstraction” built on top
of a single service to provide flexible connectors between the services and the process-
support components. The entire service interface itself can be a service connector type
(with low possibility of reusing the consuming component) or the generic service
connector types can be defined across conceptually similar services (with high possibility
of reusing the consuming component). A process-support component is programmed as
an acceptor of service connector types, whereas services act as a provider.

To support dynamic initialization of process-support components at runtime with
required services, we have applied the Inversion of Control (IoC) design pattern [3]. The
primary rational behind IoC is that, instead of a component requesting to bind with other
components/services, the runtime environment calls the component and supplies the
resources necessary for it to execute [3]. Therefore, during process-support component
design all dependencies to external resources are removed. Then, during architecture
configuration at runtime, this information is dynamically supplied to a process-support
component. To enable the IoC pattern, all process-support components must support a
contractual interface that mandates a certain common expected behavior amongst all
participating entities. The contractual interface mandates the following operations to be
supported by a process support-component:
• Interface injection: The “setService” method accepts service name and service

connector type as parameters. Through this method, the component is injected with
the information it requires to be attached with appropriate services that are providers
of acceptable service connector types.

• Associating Task Listener: A runtime environment subscribes to the process-support
component for being notified after task completion. To enable subscription, based on
the observer pattern [16], the component (subject) provides the
“addTaskListener” method. A runtime environment (observer) must implement
the “TaskEventInterface” interface to be eligible for the subscription.

• Task Completion Event: As part of the observer pattern, the process-support
component (subject) needs to notify the completion of its task to the runtime

Accepted on July 14, 2008

Seok-Won Lee, Robin A. Gandhi, Siddharth J. Wagle

16

environment (observer) that subscribes for the notification. The component calls the
“raiseTaskCompletionEvent” method on itself to perform this notification.

Fig. 8 summarizes our conceptual understanding of a process-support component
along with the role of service connector types in determining appropriate/eligible services
to which it can bind. In Fig. 8, the component “PC1” can be injected with the information
to bind with knowledge service “S1” or “S2” using appropriate connector types. It should
be noted that all connector type inputs accepted by a process-support component may not
be required for its execution. The input connector types can also be mutually exclusive.
Such constraints are documented in the component specification and enforced at runtime
to prevent conflicts.

5.2.2. Architectural Weaving Rules

To guide runtime architectural composition, each workbench task instance in the
process ontology is associated with one or more architectural weaving rules. The rule
associates a process-support component with an appropriate knowledge service and
supplies this information at runtime for weaving the integrated workbench architecture.
Computationally, depth-first navigation of the hierarchical process ontology and the
sequence of the workbench tasks, determines the firing sequence of these rules. Depth-
first navigation and sequencing of workbench tasks ensures that all pre-requisite process
tasks have been satisfied before reaching a certain point in the process execution.

The structure of an architectural weaving rule is analogous to the aspect construct in
the AspectJ language [36] [18]. Each rule modularizes architecture composition
knowledge in the scope of a workbench task. This knowledge is usually related to the
initialization of a process-support component by supplying it with references to the
services required for its execution. In addition, it can be used to directly invoke specific
events in process-support components or call methods defined in the services at
appropriate points in the process execution. Fig. 9 shows the architectural weaving rule
structure using the UML modeling notation. The descriptions of elements in Fig. 9 are as
follows:

SERVICE CONNECTOR
TYPE 1 ACCEPTOR

OUTPUT

PROCESS SUPPORT
COMPONENT PC1

SERVICE CONNECTOR
TYPE 2 ACCEPTOR

SERVICE CONNECTOR
TYPE 1 PROVIDER

KNOWLEDGE
SERVICE S1

KNOWLEDGE
SERVICE S2

CONTRACTUAL
INTERFACE

SERVICE CONNECTOR
TYPE 2 PROVIDER

ANOTHER POTENTIAL SERVICE
TO WHICH THE COMPONENT

PC1 CAN BIND USING ONLY THE
CONNECTOR TYPE 1

SERVICE CONNECTOR
TYPE 1 PROVIDER

SERVICE CONNECTOR
TYPE 3 PROVIDER

A SERVICE WHICH
SUPPORTS BOTH
THE CONNECTOR
TYPES 1 AND 2

A PROCESS-SUPPORT
COMPONENT WITH

CONNECTOR TYPES 1 AND 2

Fig. 8. A Conceptual Overview of a Process-Support Component and example Knowledge Services to which it
can bind using appropriate Knowledge Service Connector Types.

Accepted on July 14, 2008

Ontology-Guided Service-Oriented Arch. Composition to Support Complex & Tailorable Process Definitions

17

• Architectural Weaving Rule: A workbench task in the process ontology aggregates
one or more architectural weaving rules. A RulePriority attribute for each rule
determines the execution sequence among multiple rules.

• Advice: Each architectural weaving rule aggregates a single Advice. An advice
maintains references to a single process-support component and a single service. The
ServiceConnecterType attribute of the advice identifies a compatible match between
the referenced process-support component and knowledge service.

• Command: An advice aggregates one or more Commands. The following properties
are associated with a Command:
− CommandPriority: it determines the order of execution among multiple

Commands.
− ApplicableInferenceRule (optional): To promote flexibility in using the

knowledge base, the ApplicableInferenceRule property of a Command can
specify an inference to be executed on the knowledge base. The results of the
inference rule (inferred tuples) is consumed by the process-support component
associated with the Advice.

− isApplicableComponent (optional): A Boolean value, which if true determines
that the Command only applies to the Process-support component associated
with the Advice.

− isApplicableService (optional): A Boolean value, which if true determines that
the Command only applies to the service associated with the advice.
The ApplicableInferenceRule, isApplicableComponent and isApplicableService
properties are mutually exclusive, i.e. only one of them can be valid for a
Command.

Workbench Task

-TaskName
-TaskDescription

Architectural
Weaving Rule

- RulePriority

1..*

Command

- CommandPriority
- [ApplicableInferenceRule]
- [isApplicableService]
- [isApplicableComponent]

Command

- CommandPriority
- [ApplicableInferenceRule]
- [isApplicableService]
- [isApplicableComponent]

Command
Operation

- CommandOperationPriority
- OperationSignature
- OperationParameters

Command
Operation

- CommandOperationPriority
- OperationSignature
- OperationParameters

Advice

- ServiceConnectorType

Knowledge Service

- InterfaceName
- InterfaceLocation
- IsActive

Knowledge Service

- InterfaceName
- InterfaceLocation
- IsActive

1

1

Process-Support Component

- ComponentName
- ComponentLocation
- IsActive

Process-Support Component

- ComponentName
- ComponentLocation
- IsActive

1

1..*

*

Fig. 9. The Architectural Weaving Rule Model.

Accepted on July 14, 2008

Seok-Won Lee, Robin A. Gandhi, Siddharth J. Wagle

18

• Command Operation: A Command aggregates zero or more Command Operations.
If any one of the isApplicableComponent or the isApplicableService property of the
Command is true, then a Command Operation specifies the Operation to be invoked
on the process-support component or the knowledge service using the
OperationSignature and OperationParameters attributes. If a Command has an
ApplicableInferenceRule property then a Command Operation is not required.
− CommandOperationPriority: Prioritizes the execution of Command Operations.
− OperationSignature: This property holds the actual method signature defined in

the process-support component interface or the knowledge service interface.
− OperationParameters: This property holds a list of parameters required by the

method signature defined in the OperationSignature property.
Typically, the Command Operations initialize a process-support component and supply it
with references to the services that it requires to execute. The Command Operations can
also be executed directly on a service interface, to perform background tasks. For
example, in the context of DITSCAP RDM knowledge service (Fig. 3 and Section 4.1),
after the user has answered a requirements applicability questionnaire, the next
workbench task is to search all applicable requirements from the RDM. This task can be
initiated by modeling a command which invokes the “selectApplicableRequirements”
operation defined in the RDM Knowledge Service “S1”, as show in Fig. 3, Label 1. The
specification of OperationSignature thus follows the methods defined in the process-
component contractual interface or the knowledge service interface. If a process-support
component requires multiple service connector types for its execution, then multiple rules
are modeled to achieve the required composition. The rules can also be ordered using the
RulePriority attribute. An example of such composition is demonstrated in Fig. 10.

6. The Process-Aspect Knowledge Service

The process-aspect knowledge service provides operations to access the classification
and categorization of the C&A process definition modeled in the process ontology. The
process-aspect knowledge service definition allows the process related crosscutting
concerns to be injected by a weaving mechanism at specific points during process
execution in the workbench architecture. Therefore, we distinguish an aspect knowledge
service from the knowledge services discussed in Section 4. An aspectual knowledge

TASK 3
ARCHITECTURAL
WEAVING RULE:

r3
S2

PC3 PC3

S1 S2

FINAL
COMPOSITION

TO SATISFY
TASK 3 S1

PC3

r3 r4

TASK 3
ARCHITECTURAL
WEAVING RULE:

r4

RulePriority (r3) = 1.0

Time = t0

RulePriority (r4) = 0.75

Time = t1, t1> t0 Time = t2, t2 > t1 > t0
Fig. 10. Multiple Architectural Weaving Rules

Accepted on July 14, 2008

Ontology-Guided Service-Oriented Arch. Composition to Support Complex & Tailorable Process Definitions

19

service guides the composition of other services and exposes such knowledge as
executable operations for runtime architecture configuration in a particular instantiation.

The process ontology development discussed in the previous section is an ongoing
activity as the development of the software system being certified progresses and/or the
understanding of the C&A process matures. In tandem, the C&A process execution and
the workbench architecture composition continue to perform one workbench task after
another until all the high-level goals modeled in the process ontology are satisfied.
Although we do not expect the process ontology to be available in its entirety from the
start; architecture composition of the workbench can progress using the process-aspect
knowledge service as parts of process ontology become available. Pre-engineered
templates of process ontology exposed through a process-aspect knowledge service can
also address the needs of known variations in the C&A process. With minor adjustments,
the pre-engineered templates of the process ontology can readily cater to the C&A needs
of different agencies or software system development strategies within an organization.

The process of designing a process-aspect knowledge service interface is similar to
that discussed for other knowledge services in Section 4. Independent of the concepts in
the process ontology, the process-aspect knowledge service interface supports operations
for navigating the process ontology and retrieving an ordered set of workbench tasks to
be executed. In the following section we discuss how a runtime environment uses these
operations to perform architecture composition.

6.1. Architecture Composition Algorithm

To perform a dynamic composition of the workbench architecture, a runtime
environment needs to systematically interpret the process ontology exposed through the
process-aspect knowledge service. Essentially, we have developed an architecture
composition algorithm that provides the runtime environment with an explicit sequence
of steps to extract, interpret and fire the architectural weaving rules available from the
process-aspect knowledge service. We describe the algorithm using pseudo code in Fig.
11. The first step of the architecture composition algorithm is to identify a sequence of
tasks that need to be executed to satisfy the C&A goals. Depth-first navigation of the
hierarchical levels defined in the process ontology yields an ordered set of atomic tasks.
This type of navigation ensures that pre-requisite tasks are satisfied before reaching a
particular task in the process execution. In addition, depth-first navigation does not
demand completeness on part of the process ontology. Depth-first navigation is
accomplished by the “getAtomicTasks” method defined in the process-aspect
knowledge service interface (Fig. 11, Line 4).

The next step is to identify the set of workbench tasks modeled for each atomic task
(Fig. 11, Line 7). Since most knowledge base operations return an unordered set of
results, the retrieved set of workbench tasks are explicitly ordered based on the
“predecessor_of” relationship among them (Fig. 11, Line 8) to initialize their execution
sequence (Fig. 11, Line 9).

Accepted on July 14, 2008

Seok-Won Lee, Robin A. Gandhi, Siddharth J. Wagle

20

Several steps are involved in processing each identified workbench task in the execution
sequence. The first step is to retrieve and order the set of architectural weaving rules
associated with a workbench task (Fig. 11, Lines 12 and 13). Then each rule is interpreted
to gather the composition knowledge necessary to weave the workbench architecture
(Fig. 11, Line 16). Using this composition knowledge the appropriate process-support

1. Begin: Architecture Composition Algorithm

//Initialization
2. WorkbenchExecutionPool W ← null;
3. KnowledgeInterface P ← KnowledgeFactory.getKnowledgeInterface

(“ProcessAspectKnowledgeService”)
4. AtomicTaskList L ← P.getAtomicTasks();
5. WorkbenchTaskList T ← null;

//Workbench Task List Identification
6. for each AtomicTask A in the AtomicTaskList L, do
7. WorkbenchTaskList V ← P.getWorkbenchTasksList(A);
8. V ← V.sortUsingInterdependencies();
9. T.append(V)
10. end for

//Dynamic Workbench Composition
11. for each WorkbenchTask t in WorkbenchTaskList T, do

12. WeavingRuleList R ← P.getWeavingRuleList(t);
13. R ← R.sortByRulePriority();

// Aspect-Rule Interpretation
14. CompositionKnowledge C ← null;
15. for each WeavingRule r in WeavingRuleList R, do
16. C.append(P.interpretWeavingRule(r));
17. end for

14. //Perform Architecture Composition and
//Save Execution Context for Session Management

18. C.execute();
19. W.add(C);

//Assign Task Listener
20. ProcessSupportComponent X ← C.getComponent();
21. X.addTaskListener(RuntimeEnvironment);

//Proceed upon Task Completion
22. if X.raiseTaskCompletionEvent() Equals True, then
23. Notify RuntimeEnvironment;
24. Proceed;
25. end if
26. end for
27. end algorithm

Fig. 11. Workbench Composition Algorithm executed by the Run-time Environment

Accepted on July 14, 2008

Ontology-Guided Service-Oriented Arch. Composition to Support Complex & Tailorable Process Definitions

21

component and knowledge services are invoked by the runtime environment to setup the
necessary conditions required for workbench task execution (Fig. 11, Line 18). This
execution is succeeded by the runtime environment setting up a task listener on the
invoked process-support component (Fig. 11, Line 21) which then notifies the runtime
environment of the completion of its task (Fig. 11, Lines 22 and 23). The runtime
environment proceeds with the next workbench task once the task completion notification
is received. The algorithm completes when all the workbench task instances have been
executed to produce as output an integrated workbench architecture that conforms to the
C&A process definition.

6.2. Stakeholder Understanding of the Process-Aspect Knowledge Service

The architectural style described in this paper has been enabled in a prototype C&A
workbench implementation to support the DITSCAP. The prototype system addresses the
DITSCAP automation objectives for understanding C&A requirements applicability,
compliance evidence gathering, risk analytics, process analytics, and documentation
analytics [47] [46] [38]. Although the scope of this paper does not permit a detailed
discussion of these design objectives, here we elaborate upon our efforts to leverage the
process ontology to increase stakeholder understanding of the process definition and its
implementation using SOA.

Fig. 12 depicts a well-annotated screenshot of the “Process Understanding” interface
in the workbench that provides several insights to comprehend the tailored process
definition as well as its implementation using SOA. In particular, stakeholders can
browse the hierarchical organization of process activities in the process ontology (Fig. 12,
Label 2) and list the associated workbench tasks (Fig. 12, Label 3); knowledge services
(Fig. 12, Label 4); and process-support components (Fig. 12, Label 5). This explicit
traceability helps develop metrics for the effectiveness of the knowledge services as well
as their reuse across process activities. These metrics are important to justify the
functional and non-functional characteristics of a SOA. Although the current prototype
implementation provides simple visualization techniques (Fig. 12, Label 8) to browse the
process definition, in the future, we plan to add more support to visualize
interdependencies among process activities, process tracking and systematically navigate
the artifacts produced throughout the process lifecycle.

The architectural weaving rules (Fig. 12, Label 6 and 7) associated with each
workbench task provide in-depth understanding of required compositions in the SOA to
satisfy the task. Such rule browsing systematically reveals the required dynamics and
flexibility in architecture composition to support a complex and tailorable C&A process.

7. Related Work

In the context of web-services, planning the service selection and interaction are the most
significant parts of executing a task defined in an abstract business process workflow [39]
[8]. This notion of enabling a process workflow execution through interactions among

Accepted on July 14, 2008

Seok-Won Lee, Robin A. Gandhi, Siddharth J. Wagle

22

selected services has received much attention in the grid community [20] [55]. Naturally,
in order to automate planning of service selection and interaction, the usage of semantic
information about services is gaining momentum as the next logical step in the evolution
of web services [30] [50] [26] [23]. These solutions address the problems related to web
services fueled by the growth of the Internet: 1) how to select the best set of services
among numerous available services based on factors such as process constraints, end-user
preferences, execution context or other QoS constraints [8]; and 2) how to manage
interactions among the selected heterogeneous services. Rather than focusing on the
selection and interactions among services available in a web environment, we focus on
providing solutions to compose applications using SOA that cater to the need for
tailorable processes in a socio-technical environment. While pointing to the view of web

Fig. 12. A Screenshot of the Process Understanding Tab in the C&A Workbench Prototype for the DITSCAP

Accepted on July 14, 2008

Ontology-Guided Service-Oriented Arch. Composition to Support Complex & Tailorable Process Definitions

23

services as the implementation environment for process enactment, Hollingsworth [10]
stresses that such a view raises the danger of ignoring the organizational and human
aspects of the business process, in favor of a resource model entirely based on web
services. Particularly, complex processes, such as C&A are deep-rooted within a rich
organizational and social setting, therefore their execution cannot be completely specified
in terms of service interactions but based on a continuous exchange of artifacts between
the social and technical worlds separated at the process-support system boundary.

Benefits of embedding descriptive ontologies or referencing semantic metadata
within software system design models are being advocated in a recent World Wide Web
Consortium (W3C) working draft [34]. The rationale is to combine semi-formal, model-
driven techniques of software engineering with approaches common to knowledge
engineering. These principles have also been applied to support the development and
administration of software components deployed in an application server using formal
ontological definitions [12]. In this approach, the ontology construction is geared towards
facilitating system administrators or developers in application server configuration by
providing concepts that describe component and service characteristics. However, this
approach lacks a meta-model that links the specific components and services with the
high-level strategic business process goals that justify their existence and appropriate
composition. Such high-level goals also have been deemed important in the frameworks
proposed for self-managed and dynamic adaptive systems [28]. The applications of these
systems in robotics [11] have shown the use of component-based software development
and ontologies to enable dynamic architecture reconfiguration in response to changes in
environmental factors. Cervantes et al. [22] have introduced concepts from service
orientation into a component model to build autonomic component-based applications
that react to changes in service availability. However, their framework does not focus on
issues related to stakeholder understanding of the composed application architectures or
separation of process concerns.

The synergy between aspect and service oriented paradigms has also been explored
by Mendonca et al. [32]. They introduce the notion of aspectual services which invoke
additional behavior upon identifying a particular message interaction between the service
consumer and service provider. However, these aspectual services are loosely coupled
and do not have any impact on the architecture of the system. In our approach, the
process ontology allows for early requirements engineering artifacts (e.g. early aspects
[4] in requirements engineering) to be carried over to later service lifecycle stages as well
as influence service deployment. The process ontology supports explicit traceability
between problem-level abstractions and their implementations using services, a notion
which is central to the philosophy of Model-driven Engineering (MDE) [35].

Our work in many aspects complements the principles of the Workflow Management
Coalition (WfMC) for supporting business process workflows [9]. The BPEL language in
the webservices domain has also originated from the general principles of WfMC. More
recent extensions of BPEL [25] such as AO4BPEL [2] and Aspect Weaving BPEL
Engine [5] focus on modularization of the BPEL specification to support dynamic

Accepted on July 14, 2008

Seok-Won Lee, Robin A. Gandhi, Siddharth J. Wagle

24

adaptation capabilities of the previously static process definition. In contrast, our
approach addresses the problems of process complexity and tailorability based on rich
and flexible knowledge models of the process definition that are built to reflect
customized needs and are later exposed as services themselves. Our approach promotes
homogeneity in the service-oriented infrastructure by eliminating the need for specialized
engines to interpret and manage process specifications.

Knowledge based systems have long been advocated to elicit, represent and
disseminate rich information throughout the software lifecycle [6], for example in
modeling and analyzing requirements [21] [29] [43] [6], capturing design rationale [24],
and many others. However, no systematic guidance is available in designing flexible and
scalable applications. Our work provides important insights for exposing ontological
models that offer deep representation of the software artifacts themselves and then
exposing such knowledge as services that support the enactment of a process.

8. Contributions and Future Work

In this paper we discussed the challenges in composing applications based on SOA to
support business processes that are complex (highly embedded in a socio-technical
environment) and tailored (based on stakeholder negotiations) in each of their
instantiations. We demonstrated by example of a C&A process, our approach to
systematically capture the process definition as an ontological model and expose it as a
process-aspect knowledge service that guides architecture composition based on the
principles of SOA. While enumerating the steps in our approach, we identify several best
practices in service and component design for a dynamic and flexible SOA. As an
intended benefit of our approach we demonstrate strategies for end-users to understand
and possibly configure SOA based process-support systems using intuitive interfaces and
visualizations.

Our approach for composing applications using SOA has contributed to several
desirable characteristics in the design of a workbench for supporting C&A processes. The
C&A process is a huge undertaking which requires enormous amount of resources to
define, conduct and manage. To this end, the workbench architecture provides flexibility
in configuring a tool support that is tailored to meet the needs of the C&A process in each
of its instantiations. From the perspective of the C&A process, the work presented here
makes the following contributions:
• The workbench architecture is composed in accordance with the on-going tailoring

effort of the C&A process
• The process ontology provides active guidance to stakeholders through explicit

traceability between the C&A process definition and the available services and
components

• Early separation of C&A process related cross-cutting concerns is achieved using
ontological domain modeling techniques. This separation allows the process,
services and components in the architecture to be loosely coupled with each other.

Accepted on July 14, 2008

Ontology-Guided Service-Oriented Arch. Composition to Support Complex & Tailorable Process Definitions

25

• The process ontology as a hierarchical decomposition of high level strategic process
goals maintains an explicit argument for process fulfillment through automation
using SOA and allows fine-grained progress tracking

• The process ontology construction helps promote a common understanding among
stakeholders of a complex and exhaustive C&A process. The inherent richness and
flexibility offered by ontological domain modeling techniques imposes little or no
constraints while representing the granularity or scope of the original C&A process
definition

• We identify guidelines for exposing ontological domain models as services through a
incremental and layered approach to produce interface definitions

• We define architectural weaving rules and demonstrate the use of aspect-oriented
design philosophies to weave process related cross-cutting concerns with services
that provide functional abstractions

• The architectural weaving rules provide declarative specifications to compose SOA
based on semantics that are easily understandable and reviewable by stakeholders

• We outline the design of a unique and integrated solution that leverages the synergy
among service, aspect, component, and ontological domain modeling philosophies to
build a highly dynamic and flexible SOA

It should be noted that flexibility of our SOA-based design solution depends on
several factors which include the richness of the ontological models in the PDO, the
granularity of tasks supported by process-support components, and the level of
abstraction of the operations supported by the knowledge services. Nevertheless, our
approach provides the necessary techniques to address the needs of a complex and
tailorable process through dynamic and transparent (end-user participation and
understanding) configuration of its process-support system architecture.

As part of our ongoing and future work, we are exploring the opportunities offered by
SOA to support C&A in a net-centric environment [19]. A net-centric environment
requires faster assess to current C&A information, at a reduced cost, and delivered
simultaneously to a variety of devices in different locations. The vision of net-centric
C&A is currently seen as “networked C&A activities accomplished through distributed
collaboration processes designed to ensure that all pertinent available system-security
information is dynamically managed, visible, and shared” [19]. To facilitate this vision,
existence of a common understanding of regulatory requirements among all the
distributed collaborating C&A and risk assessment processes is inevitable. In addition,
tool support for C&A should be able to aggregate and deliver artifacts from
heterogeneous sources in a distributed environment. To this end, the work presented in
this paper provides a guidance to develop services to aggregate, produce, analyze and
disseminate C&A artifacts using ontological domain modeling techniques. The recent
transition of DITSCAP to DIACAP [19], geared towards net-centric infrastructure,
implies the changes in process and the format of delivery and consumption of C&A
artifacts; but they still significantly overlap over the set of documents suggested for
identifying C&A requirements. This case also confirms the stability and reusability of the
knowledge services defined for a C&A process in an organization.

Accepted on July 14, 2008

Seok-Won Lee, Robin A. Gandhi, Siddharth J. Wagle

26

Our prototype workbench provides an excellent test-bed for further exploring the
possibilities to separate other functional and non-functional cross-cutting concerns related
to access control, dynamic help, version control, logging, and accountability. These are
all important concerns while composing an application based on SOA. We are also
working towards managing access to services or parts of services (groups of critical
operations) based on user roles and access control policies. Providing runtime evaluation
of the interactions among multiple cross-cutting concerns to prevent conflicting
architectural compositions is also another important direction for our future work.
Finally, we plan to perform a case study using domain experts to evaluate the impact our
design on process understanding and the ease of architecture configuration while tailoring
the C&A process.

9. References

[1] A. Brown, S. Johnston and K. Kelly, Using Service-Oriented Architecture and Component-
Based Development to Build Web Service Applications, Rational Software White Paper,
(2002)

[2] A. Charfi and M. Mezini, “Aspect-Oriented Web Service Composition with AO4BPEL,” In
Proc. of European Conference on Web Services, LNCS Vol. 3250, Springer-Verlag, 2004

[3] A. Dearle, Software Deployment: Past, Present and Future, In Proc. of the Future of Software
Engineering, held in conjunction with the 29th Int. Conf. on Software Engineering,
(Minneapolis, MN, 2007), pp. 269-284.

[4] A. Rashid, P. Sawyer, A. Moreira and J. Araujo, Early aspects: a model for aspect-oriented
requirements engineering, In Proc. of IEEE Joint Int. Conf. on Requirements Engineering, (9-
13 Sept. 2002), pp. 199 – 202.

[5] C. Courbis, and A. Finkelstein, “Towards an Aspect Weaving BPEL Engine,” In Proc. of the
3rd AOSD Workshop on Aspects, Components, & Patterns for Infrastructure Software, (2004)

[6] C. Rich, and R. C. Waters, Knowledge Intensive Software Engineering Tools, IEEE
Transactions on Knowledge and Data Engineering, 4(5), (1992) 424-430.

[7] C. Szyperski, Component technology: what, where, and how?, In Proc. of the 25th Int. Conf.
on Software Engineering, (Portland, Oregon, 2003), pp. 684 - 693.

[8] D. Ardagna and B. Pernici, Adaptive Service Composition in Flexible Processes, IEEE
Transactions on Software Engineering, 33(6) (2007).

[9] D. Hollingsworth, The Workflow Reference Model, WFMC-TC-1003, Ver. 1.1, (19-Jan
1995), http://www.wfmc.org/

[10] D. Hollingsworth, The Workflow Reference Model: 10 Years On, Book Chapter in the
Workflow Handbook, (2004), http://www.wfmc.org/standards/referencemodel.htm

[11] D. Kim, S. Park, Y. Jin, H. Chang, Y. Park, I. Ko, K. Lee, J. Lee, Y. Park and S. Lee,
SHAGE: a framework for self-managed robot software, In Proc. of the Int. workshop on Self-
adaptation and self-managing systems at the Int. Conf. on Soft. Engg., (2006), pp. 79 – 85.

[12] D. Oberle, S. Staab and A. Eberhart, Towards Semantic Middleware for Web Application
Development, IEEE Distributed Systems Online (2005).

[13] DoD 8510.1-M, DITSCAP Application Manual, (2000).
[14] DoD Instruction 5200.40: DITSCAP, (1997).
[15] DoD Instruction 8500.2. IA Implementation. (Feb 2003).
[16] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, (Addison -Wesley, 1995).

Accepted on July 14, 2008

Ontology-Guided Service-Oriented Arch. Composition to Support Complex & Tailorable Process Definitions

27

[17] G. Alonso, F. Casati, H. Kuno and V. Machiraju, Web Services. Concepts, Architectures and
Applications, (Springer-Verlag, Berlin Heidelberg, 2004).

[18] G. Kiczales and M. Mezini, Aspect-oriented programming and modular reasoning, In Proc. of
the 27th Int. Conf. on Software Engineering, (ICSE '05), (2005), pp. 49- 58.

[19] G. Turner, P. Holley, E.J. Mehan and M. Colon, Net-Centric Assured Information Sharing –
Moving Security to the Edge through dynamic C&A, IANewsletter, 8(3), (Winter 2005/2006).

[20] G.C. Fox and D. Gannon, Workflow in Grid Systems, Int. J. on Concurrency and
Computation: Practice and Experience, 18(10), (Wiley, 2006) 1009-1019.

[21] H. B. Reubenstein and R. C. Waters, The Requirements Apprentice: Automated Assistance
for Requirements Acquisition, IEEE Trans. on Soft. Engg., 17(3), (Mar. 1991) 226-240.

[22] H. Cervantes and R.S. Hall, Autonomous adaptation to dynamic availability using a service-
oriented component model, In Proc. of the 26th Int. Conf. on Soft. Engg., (2004), pp. 614- 623.

[23] I. Budak Arpinar, Alman-Meza, R. Zhang and A. Maduko, Ontology driven Web Service
Composition Platform, IEEE Int. Conf. on E-Commerce Technology, (2004).

[24] I. Gorton and A. Babar, Architecture Knowledge Management: Concepts, Technologies,
Challenges, The Working IEEE/IFIP Conf. on Software Architecture, (2007).

[25] IBM, BEA Systems, Microsoft, SAP AG and Siebel Systems, Business process execution
language for web services (BPEL4WS) version 1.1. http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/, (2005).

[26] J. Cardoso and A. Sheth, Semantic E-Workflow Composition, J. of Intelligent Information
Sys. 21(3) (2003) 191-225

[27] J. Kimbell and M. Walrath, Life Cycle Security and DITSCAP, IANewsletter, 4(2), (2001)
http://iac.dtic.mil/iatac

[28] J. Kramer and J. Magee, Self-Managed Systems: An Architectural Challenge, In Proc. of the
Future of Software Engineering, held in conjunction with the 29th Int. Conf. on Software
Engineering, (Minneapolis, MN, 2007), pp. 259-268.

[29] J.C.S.P. Leite and P. A. Freeman, Requirements Validation through Viewpoint Resolution,
IEEE Transactions on Software Engineering, 17(12), (Dec. 1991) 1253-1269.

[30] M. Meyer and D. Kuropka, Requirements for Service Composition, Tech. Report of the
Hasso-Plattner-Institute, Partners of the Automated Services Grid (ASG) Project 11 (2005),
ISBN 3-937786-81-3

[31] M. P. Papazoglou, and D. Georgakopoulos, Service-oriented computing, Communications of
the ACM (CACM) 46(10), (Oct. 2003).

[32] N.C. Mendonca and C.F. Silva, Aspectual Services: Unifying Service-and Aspect-Oriented
Software Development, In Proc. of Int. Conf. on Next Gen. Web Services Practices, (2005).

[33] Office of Management and Budget (OMB), FY 2005 Annual Report to Congress on
Implementation of The Federal Information Security Management Act of 2002, (March 1,
2006).

[34] P. Tetlow, J.Z. Pan, D. Oberle, E. Wallace, M. Uschold and E. Kendall (eds.), Ontology
Driven Architectures and Potential Uses of the Semantic Web in Systems and Software
Engineering, Draft, (Feb 2006), http://www.w3.org/2001/sw/BestPractices/SE/ODA/

[35] R. France and B. Rumpe, Model-Driven Development of Complex Software: A Research
Roadmap, In Proc. of the Future of Software Engineering, held in conjunction with the 29th
Int. Conf. on Software Engineering, (Minneapolis, MN, 2007), pp. 37-54.

[36] R. Laddad, AspectJ in action: practical aspect-oriented programming, (Manning Publications,
2003).

[37] R. Perrey and M. Lycett, Service-oriented architecture, In Proc. of Symp. on Applications and
the Internet Workshops (SAINT '03), (2003), pp. 116- 119.

Accepted on July 14, 2008

Seok-Won Lee, Robin A. Gandhi, Siddharth J. Wagle

28

[38] R.A. Gandhi, and S.W. Lee, Discovering and Understanding Multi-dimensional Correlations
among Certification Requirements with application to Risk Assessment, In Proc. of the 15th
IEEE Int. Requirements Engg. Conf., (October 15-19, Delhi, India, 2007) pp. 231-240.

[39] S. Dustdar and W. Schreiner, A survey of web services composition, Int. J. of Web and Grid
Services, 1(1), (2005) 1-30.

[40] S. K. Miller, Aspect-oriented programming takes aim at software complexity, IEEE
Computer, 34(4) (Apr 2001) 18-21.

[41] S.W. Lee and D. Yavagal, GenOM User’s Guide V2.0, Tech. Report TR-NiSE-05-05, (UNC
Charlotte, 2005).

[42] S.W. Lee and R.A. Gandhi, Requirements as Enablers for Software Assurance, CrossTalk:
The Journal of Defense Software Engineering, 19 (12, December issue), (2006) 20-24.

[43] S.W. Lee, and R.A. Gandhi, Ontology-based Active Requirements Engineering Framework,
In Proc. 12th Asia-Pacific Soft. Engg Conf., (IEEE CS, 2005), pp. 481-490.

[44] S.W. Lee, D. Muthurajan, R.A. Gandhi, D.S. Yavagal and G.J. Ahn, Building decision
support problem domain ontology from natural language requirements for software assurance,
Int. J. on Software Engg and Knowledge Engg., 16(6), (2006) 851-884.

[45] S.W. Lee, R.A. Gandhi and G.J. Ahn, Certification Process Artifacts Defined as Measurable
Units for Software Assurance, Int. J. on Software Process: Improvement and Practice, John
Wiley & Sons, Ltd. 12(2), (2007) 165-189, doi: http://dx.doi.org/10.1002/spip.313

[46] S.W. Lee, R.A. Gandhi, S.J. Wagle, and A.B. Murty, r-AnalytiCA: Requirements Analytics
for Certification & Accreditation, In the Proc. of the 15th IEEE Int. Requirements Engg. Conf.
(RE 07), Posters, Demos and Exhibits Session, (October 15-19, Delhi, India, 2007).

[47] S.W. Lee, R.A. Gandhi, and S.J. Wagle, Towards a Requirements-driven Workbench for
Supporting Software Certification and Accreditation, In Proc. of the 3rd Int. Workshop on
Software Engineering for Secure System (SESS 07), at the 29th Int. Conf. on Software
Engineering, (Minneapolis, MN, 2007).

[48] S.W. Lee, R.A. Gandhi, and G.J. Ahn, Security Requirements Driven Risk Assessment for
Critical Infrastructure Information Systems, In Proc. Symp. on Requirements Engg. for
Information Security (SREIS '05), at 13th IEEE Int. Requirements Engg. Conf. (RE ‘05),
(Paris, France, IEEE Press, 2005).

[49] S.W. Lee, R.A. Gandhi, and S. Park, Tracing Requirements, (a book chapter to appear in The
Encyclopedia of Software Engineering, Taylor and Francis Group, LLC, 2008)

[50] T. Fahringer, H. Krause, D. Kuropka, H. Mayer,A. Ocampo, B. Schreder, S. Staab, P. Tröger,
A. Wahler and M. Zaremba, ASG technology advantages and disadvantages, exploitation
possibilities and its business impact, Adaptive Services Grid – White Paper, (March 19th,
2007), http://asg-platform.org/cgi-bin/twiki/view/Public/WebHome

[51] The United States General Accounting Office, Agencies Need to Implement Consistent
Processes in Authorizing Systems for Operation, Report to Congressional Requestors, GAO-
04-376, (June 2004)

[52] V. K. Chaudhri, A. Farquhar, R. Fikes, P.D. Karp and J. Rice, OKBC: a programmatic
foundation for knowledge base interoperability, In Proc. 15th Conf. on Artificial Intelligence,
(1998), pp. 600-607.

[53] van Lamsweerde, A., Goal-oriented requirements engineering: a guided tour, In Proc. of the
5th Int. Symp. on Requirements Engg., (Toronto, Canada, August 2001), pp. 249-262.

[54] W. Swartout; A. Tate, “Ontologies” IEEE Intelligent Systems, 14(1), (1999) 18-19.
[55] Z. Laliwala, R. Khosla, P. Majumdar and S. Chaudhary, Semantic and Rules Based Event-

Driven Dynamic Web Service Composition for Automation of Business Process, In Proc. of
IEEE Services Computing Workshop, (2006).

Accepted on July 14, 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

