
The Disciple Integrated Shell and Methodology
for Rapid Development of Knowledge-Based Agents

Mihai Boicu, Kathryn Wright, Dorin Marcu, Seok Won Lee, Michael Bowman and Gheorghe Tecuci
Learning Agents Laboratory, Department of Computer Science, MSN 4A5, George Mason University, Fairfax, VA 22030

{mboicu, kwright, dmarcu, swlee, mbowman3, tecuci}@gmu.edu

Abstract
The Disciple Learning Agent Shell (Disciple-LAS) is an
integrated set of modules for rapid development of practical
end-to-end knowledge-based agents, by domain experts,
with limited assistance from knowledge engineers. Disciple-
LAS and its associated agent building methodology are
presented in (Tecuci et al. 1999). Therefore, in this paper,
we introduce two very different agents developed with
Disciple-LAS, to show its applicability to a wide range of
domains. Then we introduce the different modules that are
part of Disciple-LAS, and present their use in the agent
building process. Finally we summarize the solutions
proposed by the Disciple approach to some of the issues
that have been found to be limiting factors in developing
knowledge-based agents.

Introduction
Disciple-LAS is an integrated set of modules for rapid
development of practical end-to-end knowledge-based
agents, by domain experts, with limited assistance from
knowledge engineers. It consists of knowledge acquisition,
learning and problem solving modules, developed to
support the specific Disciple methodology for building an
agent (Tecuci et al. 1999). The knowledge base of such an
agent has two components: an ontology that defines the
concepts from the application domain, and a set of problem
solving rules expressed with these concepts. The problem
solving approach of an agent built with Disciple-LAS is
task reduction, where a task to be accomplished by the
agent is successively reduced to simpler tasks until the
initial task is reduced to a set of elementary tasks that can
be immediately performed. Therefore, the rules from the
KB are task reduction rules. The ontology consists of
hierarchical descriptions of objects, features and tasks,
represented as frames, according to the knowledge model
of the Open Knowledge Base Connectivity (OKBC)
protocol (Chaudhri et al. 1998).

The development of a specific Disciple agent includes
the following processes: 1) the customization of the
problem solver and the interfaces of Disciple-LAS for that
particular domain; 2) the building of the domain ontology
by importing knowledge from external repositories of
knowledge and by manually defining the other components
of the ontology, and 3) the teaching the agent to perform its
tasks, teaching that resembles how an expert would teach a
human apprentice when solving problems in cooperation.

Disciple-LAS was developed as part of the DARPA’s
High Performance Knowledge Bases Program (Cohen et al.
1998), and was applied to build two very different agents, a
planning agent and a critiquing agent. The planning agent

Copyright © 1999, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

uses hierarchical task decomposition to generate a partially
ordered plan of actions for repairing or bypassing some
damage to a bridge or road. The building and evaluation of
this agent is presented in (Tecuci et al., 1999). The
critiquing agent analyses a military course of action (COA)
to identify its strengths and weaknesses with respect to the
principles of war (e.g. the principles of objective, offensive,
mass, economy of force, maneuver, etc.) and the tenets of
army operations (e.g. the tenets of initiative, agility, depth,
etc.). The critiquing of a COA is also modeled as a task
reduction process. For instance, the task of assessing a
COA with respect to the principle of objective is reduced to
three simpler assessment tasks: 1) assess identification of
objective, 2) assess attainability of objective and 3) assess
decisiveness of objective. Then each such assessment task
is successively reduced to simpler assessment tasks and
ultimately reduced to assertions on how the COA conforms
to the principle of objective.

Disciple-LAS modules
Figure 1 presents the main modules of Disciple-LAS. They
include knowledge import/export modules, ontology
management modules, and problem solving and learning
modules.

The problem of importing knowledge from an outside
knowledge server is reduced to two simpler problems: 1) a
translation problem where an external ontology is
translated into a Disciple ontology, and 2) an integration
problem where the translated ontological knowledge is
incorporated into agent’s ontology. For the first process one
uses either the OKBC protocol to extract knowledge from
an OKBC sever, or a translator from KIF (Genesereth and
Fikes, 1992) into Disciple. For the second process one uses
the ontology management tools of Disciple.

Figure 1: Disciple-LAS modules.

PROBLEM
SOLVING
RULES

PROBLEM
MEDIATOR

ONTOLOGY
IMPORT
EXPORT

LISP LAYER

OKBC LAYER

KB MANAGER

KB
LOAD

P
R

O
B

L
E

M

PROBLEM
INSTANCES

ONTOLOGY

KIF
FILE

OKBC
SERVER

KB
SAVE

FEATURE
EDITOR

OBJECT
EDITOR

RULE
EDITOR

TASK
EDITOR

ASSOCIATION
BROWSER

HIERARCHY
BROWSER

WIZARDS

RULE
LEARNER

EXPLANATION
GENERATOR

HINT
EDITOR

RULE
REFINER

EXAMPLE
ANALYZER

EXAMPLE
EDITOR

COOPERATIVE
PROBLEM
SOLVER

AUTOMATIC
PROBLEM
SOLVER S

O
L

U
T

IO
N

In Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-99), Intelligent Systems Demonstrations,
pp. 900-901, July 18-22, Orlando, Florida, AAAI Press/The MIT Press, Menlo Park, CA. 1999.

1

The ontology management tools include a specialized
editor for each type of knowledge element to facilitate the
interaction with the users. For instance, there is an Object
Editor, a Feature Editor, and a Task Editor. We attempt to
provide each module with a certain degree of
“intelligence”, based on “wizards”. An important wizard is
the Delete Wizard that is automatically invoked whenever
the user attempts to delete an element from the KB. This
wizard guides the user through a sequence of modifications
of the KB that are necessary in order to maintain the
consistency of the KB.

The problem solving and learning modules include a
Cooperative Step-by-step Problem Solver and an
Autonomous Problem Solver, a Rule Learner, and a Rule
Refiner, an Example Editor, an Example Analyzer, a Hint
Editor, and an Explanation Generator. Their interactions
are presented in the following section.

Cooperative problem solving and learning
After an initial ontology has been created, the subject
matter expert may start to teach the Disciple agent how
solve problems, by following an interaction pattern shown
in Figure 2.

Figure 2: Expert-agent interactions.

The expert invokes the Cooperative Problem Solver,
selects or defines an initial task and asks the Disciple agent
to reduce it. Disciple uses its task reduction rules to reduce
the current task to simpler tasks, showing the expert the
reductions found. The expert may accept a reduction
proposed by the agent, may reject it or may decide to
define himself or herself a new reduction.

To define a new reduction the expert uses the Example
Editor. This, in turn, may invoke the Object Editor, the
Feature Editor or Task Editor, if the specification of the
example involves new knowledge elements that are not
present in the current ontology. Once the reduction has
been defined the Rule Learner is invoked to generalize the
example to a task reduction rule. The Rule Learner
automatically invokes the Explanation Generator that tries
to find the explanation of why the reduction indicated by
the expert is correct. The Explanation Generator proposes
several plausible explanations from which the expert has to
select the correct one. The expert may help the agent to

find the correct explanation by providing a hint defined
with the Hint Editor. This may again lead to the invocation
of the ontology management modules to define any new
knowledge base element that is included in the hint.

If the expert accepts a reduction proposed the agent then
the Rule Refiner is invoked and may generalize the rule
that has led to this reduction.

If the expert rejects a reduction proposed by the agent
then the agent attempts to find an explanation of why the
reduction is not correct, the Explanation Generator and the
Hint Editor being invoked, as described above. The
explanation found is used by the Rule Refiner to specialize
the rule.

After a new rule is learned or an existing rule is refined,
the Cooperative Problem Solver resumes the task reduction
process until a solution of the initial problem is found.

Final Remarks
Disciple-LAS provides solutions to some of the issues that
have been found to be limiting factors in developing
knowledge-based agents. Through ontology import it can
reuse previously developed knowledge. The knowledge
acquisition and adaptation bottlenecks are alleviated
through the use of apprenticeship multistrategy learning
methods and a synergistic interaction between the expert
and the agent where each does what it can do best, and
receives help from the other party. Disciple-LAS contains
many general modules that will be part of any Disciple
agent, but it also allows for the customization of some of its
modules, trying to achieve a suitable balance between
reusing general modules and developing domain specific
ones. Finally, Disciple-LAS and the Disciple agents are
portable, being implemented in JAVA and Common LISP.

Acknowledgments. This research was supported by the
AFOSR grant F49620-97-1-0188, as part of the DARPA’s
High Performance Knowledge Bases Program.

References
Chaudhri, V. K., Farquhar, A., Fikes, R., Park, P. D., and
Rice, J. P. 1998. OKBC: A Programmatic Foundation for
Knowledge Base Interoperability. In Proc. AAAI-98, pp.
600 – 607, Menlo Park, CA: AAAI Press.

Cohen P., Schrag R., Jones E., Pease A., Lin A., Starr B.,
Gunning D., and Burke M. 1998. The DARPA High-Per-
formance Knowledge Bases Project, AI Magazine,
19(4),25-49.

Genesereth M.R. and Fikes R.E. 1992. Knowledge
Interchange Format, Version 3.0 Reference Manual. KSL-
92-86, Knowledge Systems Laboratory, Stanford
University.

Tecuci, G. 1998. Building Intelligent Agents: An Appren-
ticeship Multistrategy Learning Theory, Methodology, Tool
and Case Studies. London, England: Academic Press.

Tecuci G., Boicu M., Wright K., Lee S.W., Marcu D., and
Bowman M., An Integrated Shell and Methodology for
Rapid Development of Knowledge-Based Agents, In Proc.
AAAI-99, Menlo Park, CA: AAAI Press.

ONTOLOGY
IMPORT/
EXPORT

input
problem

KNOWLEDGE
BASE

RULE
LEARNER

EXPLANATION
GENERATOR

KNOWLEDGE
ELICITATION

RULE
REFINER

COOPERATIVE
PROBLEM
SOLVER

SOLUTION
DEFINITION

RULE
REFINER

provide

new solutio
n

rejectincorrect solution

accept

correct solution

new objects,
features, tasks

generalized
rule

specialized
rule

new
rule

expert
solution

2

