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Abstract

Abstract: The unprecedented advancement of artificial intelligence (AI) in re-

cent years has altered our perspectives on software engineering and systems

engineering as a whole. Nowadays, software-intensive intelligent systems rely

more on a learning model than thousands of lines of codes. Such alteration

has led to new research challenges in the engineering process that can ensure

the safe and beneficial behavior of AI systems. This paper presents a literature

survey of the significant efforts made in the last fifteen years to foster safety in

complex intelligent systems. This survey covers relevant aspects of AI safety

research including safety requirements engineering, safety-driven design at both

system and machine learning (ML) component level, validation and verification

from the perspective of software and system engineers. We categorize these

research efforts based on a three-layered conceptual framework for developing

and maintaining AI systems. We also perform a gap analysis to emphasize the

open research challenges in ensuring safe AI. Finally, we conclude the paper by

providing future research directions and a road map for AI safety.
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1. Introduction

Recently, artificial intelligence (AI) has received increased attention from

many sectors and fields. These diverse areas include autonomous driving, com-

puter vision, medical diagnosis systems, gaming systems, etc. Various industries

are overwhelmed by the positive potential of AI. This unprecedented advance-5

ment of AI has altered our perspectives on various business functions, including

software-intensive intelligent systems development process. Machine learning

(ML) is one of the greatest contributors to this revolution. The task of a soft-

ware engineer has now transformed from writing thousands of lines of code to

training, retraining, testing, and maintaining a learning model. However, it is10

essential to realize that every advancement of technology comes with surprises

and concerns, and AI is no exception. AI revolution is not at its inception any

more. However, the means to ensuring safety, transparency, and level of fidelity

of AI systems are still unclear. Many researchers have already expressed appre-

hension related to the advent of AI especially in high-risk environments [1, 2].15

Moreover, AI systems that equal or even exceed humans in cognitive tasks are

both appealing and alarming [3, 4, 5]. Introducing a sense of ethics and morality

has long been discussed as the top priority for the days of AI [6, 7]. Therefore,

amid the excitement about improved efficiency due to AI, it is worth engaging

in discussions on its potential risks, new challenges, and questionable impact on20

safety issues [8].

The process of reduction of human interventions in many sectors of industries

is already underway. Automotive, aerospace etc. are heavily using ML algo-

rithms to paving their way towards increasing autonomy [9]. A fully automated

driver-less car is not a far-fetched dream in the days of AI [10]. However, a few25

recent accidents involving semi-autonomous cars [11] have negatively impacted

our trust in full autonomy. It has been argued that the increasing autonomy of

AI systems can have enormous impact on humanity [8, 9]. Use of systems that

rely heavily on the decision making of an ML model should be a tremendous

concern in high-risk environment. Although introduction of ML in controlling30
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complex engineering systems has been proved to be more efficient than unpre-

dictable erroneous human controls in many cases, the robustness of such ML

models should be assessed.

However, as stakeholders from various backgrounds and expertise partici-

pate in the process of ensuring safety of a complex systems, a consensus on the35

fundamental properties of autonomous systems; e.g. controllability, explainabil-

ity, robustness to uncertain environment, etc. is necessary [12, 13]. Functional

safety experts worry about the gap between the vision of the current automotive

industry and the scope of the current safety standards landscape [9]. Traditional

risk model and safety analysis [14] are also inadequate to handle the immense40

use of AI in safety-critical systems. Moreover, how the activities performed by

experts of diverse expertise integrate to foster an emergent property like safety

is not clear. For instance, how the artifacts flow across the various layers of me-

thodical systems engineering at different levels of abstractions is still an open

question. It is still unclear how the traceability can be maintained in a col-45

laborative environment where the stakeholders not necessarily speak the same

terms. Singla et al. have analyzed the differences between ML-based agile soft-

ware projects and traditional agile software projects in terms of their execution

processes, issues faced and the terms used to describe same concepts in these

two types of workload [15].50

Therefore, we believe that, we need to analyze the state-of-the-art safety

approaches through the lens of a methodological engineering process. To the

best of our knowledge, no systematic literature review of AI safety from a soft-

ware engineering perspective has been done in recent times. The landscape of

AI safety and beneficence research [16] discusses a vast range of research topics55

directed to AI safety. This article includes research areas such as validation,

verification, control, security, etc. However, in order to perform a gap analysis

on the state-of-the-art AI safety approaches, it is imperative to have a bigger

picture of the recent research efforts from an engineering process perspective.

Research questions that we try to answer through our research are:60

RQ1: How can we easily comprehend the complexity and challenges involved
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in fostering safety of a complex intelligent systems?

Rationale: AI systems today are very complex at many layers. We argue

that, not only the technical advances force us to give a deeper thought to safety

related issues, but also the diversity of stakeholders participating in the systems65

engineering process amplifies the complexity. For example, a system level safety

engineer may not be fully aware of the impact of the minute loopholes in the

software module which vastly relies on ML algorithms. As different stakeholders

with diverse expertise work at different levels of abstractions in the process of

fostering safety, it is important to visualize the state-of-the art safety approaches70

from a layered perspective.

RQ2: How have safety concerns been addressed by the researchers along the

phases of SE process?

Rationale: We acknowledge the paradigm shift that has taken place in the

software development process. However, we believe that, the foundation of soft-75

ware engineering (SE) process entailing phases such as requirements engineering

(RE), design, development, validation, verification and maintenance, still pro-

vides a strong methodological foundation to the whole process of intelligent

software engineering even in this new paradigm. Understanding data require-

ments, designing the parameters and features of a learning model, training,80

tuning and testing of the ML model, and finally, maintaining or updating the

model over time are new additions to the activities of phases such as RE, design,

development, V & V, maintenance respectively. In our study we would like to

map the research efforts in the field of AI safety along the phases of SE.

RQ3: What are the gaps in the current research efforts?85

Rationale: After we find the answers to RQ1 and RQ2, we can have an

accurate visualization of the areas that have not been explored yet. Finding the

gap can eventually help us provide possible directions for future research.

RQ4: What are the future directions that may help reduce the gaps?

Rationale: We further want to analyze the existing gaps and provide our90

preliminary vision on the ways to reduce those gaps. Our paper finds the scope

of improved collaborations among diverse stakeholders while analyzing current
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state-of-the-art safety approaches from a multidisciplinary engineering process

perspective.

In summary, the major contributions of this paper are:95

-We provide a conceptual three-layered framework that helps us visualize the

inherent complexity in developing and maintaining complex intelligent systems

involving various stakeholders.

-We identify the challenges and risks that are of major concern along each

layer of the framework.100

-We review significant work conducted to address safety-related issues in

intelligent systems in the last fifteen years.

-We perform a gap analysis to identify what aspects we are missing in liter-

ature and practice.

-Finally, we provide a research road map to expand the ongoing research on105

safe AI.

The remainder of the paper is organized as follows. In Section 2 we dis-

cuss the background of the research on safe AI systems. We summarize the

related surveys in this area and explain the position of our survey in Section

3. A detailed research method of conducting a literature review is explained in110

Section 4. Section 5 introduces the proposed three-layered conceptual frame-

work to better visualize the engineering process of complex intelligent systems.

It also elaborates on the challenges and significant research efforts address the

AI safety-related problems along each layer of the framework. We discuss our

findings of literature review based on the research questions in Section 6. The115

limitation and threats to validity of this study are discussed in Section 7. Fi-

nally, we conclude the paper in Section 8.

2. Background

2.1. What is a “Safe AI system”?

Before we investigate the formal explanation of a safe AI system, we discuss120

the definition of ‘safety’. The concept of safety has long been defined and
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analyzed from multiple perspectives. Various domains have explained safety

in different ways. Leveson explained that safety means absolutely no harm to

people and no accidents with or without harming people [17]. According to IEC

61508, “Safety is freedom from unacceptable risk”. This definition leads us to125

the concept of ‘Risk’ [18]. To analyze safety, the level of risk should be assessed.

This definition also seems to be more practical than the previous one as it is

almost impossible to engineer a fault-free system. Rather, this definition leaves

an existing scope of risk up to a certain level of tolerance. Another definition

of safety given by ISO 26262 [19] is “safety means the absence of unreasonable130

risk”. This definition involves not only the probabilistic analysis of risk, but

also the mechanisms to avoid harm and the possibilities of occurrences of such

situations.

Recently, with the unprecedented emergence of AI based systems, the con-

cept of ‘safety’ has started to entail a broader concept than the discussed defini-135

tions. AI techniques come with various inherent risks and behavior uncertainties

due to a vast range of reasons: data-driven behavior (instead of code or rule-

driven), self-learning or exploration, black-box nature, etc. As these systems

are mostly driven by a few system-level objectives specified by the designers,

it is important to ensure that the systems will not try to achieve their goals140

in an undesirable manner. In other words, the current safety concerns are not

limited to failure, non-availability, and wrong outcomes; rather the concerns in-

clude reward hacking, negative side-effects, unsafe exploration, and insufficient

robustness to distributional shift, etc. [8]. As argued by Varshney [20], it is not

enough to minimize risk by defining a risk-minimal loss function. Instead, it is145

also important to address epistemic uncertainty in the underlying distribution

of training and test instances. Moreover, as these AI systems are deployed in a

socio-technical environment, the perception of safety or ‘safe system’ depends

considerably on the confidence of society in such systems. From this perspec-

tive, a safe AI system should not only be engineered to behave safely but also150

be capable of explaining its behavior to a wide range of society.
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2.2. When is a system “safe enough”?

While nowadays we have a common understanding that no system can be

absolutely fail-free, we still do not have a consensus on the safety measurement

criteria. We have various safety standards to certify a system as safe enough155

to deploy. However, the overall quantification (formalism) of how much safe

is safe enough vary widely across various domains. Littlewood made a signifi-

cant contribution in quantifying software safety with the help of evidence-based

arguments and the confidence in those arguments [21]. With the help of multi-

legged arguments, he showed how diversity in arguments can be utilized to prove160

dependability of a software system with a certain confidence. For example: if

the overall argument is to support a claim of 10−4 pfd (probability of failure on

demand), a statistical leg can support this claim with direct evidence whereas a

logical leg can also fine-tune its confidence in the claim based on the confidence

in the statistical leg.165

Automotive industries that produce AI-based autonomous vehicles have also

faced with the same challenge to acquire sufficient confidence in the safe behavior

of a newly designed vehicle. As discussed earlier, with the advent of data-

driven learning techniques, there is little scope of finding bugs in the code or

models. Apart from gaining confidence in the usage of right set of training data,170

one of the promising ways to ensure safety is to test the system thoroughly in

simulation-based or real-world situations. However, the challenge is to make

sure that the designers have explored all possible scenarios and surprises that

the system can encounter during testing. As Koopman mentioned in [13], miles

on road is regarded as evidence of the safe behavior of the vehicle without175

any clear explanation of how many miles are enough to gain a certain level of

confidence in the safety claim. For instance, if we assume there are 100 surprises

in total, each arriving in every 100 million miles, then to prove that the systems

have encountered all the surprises and has been corrected to handle each of

those surprises, it has to be tested on at least one or two billion miles. This is180

nearly unattainable. Therefore, many researchers are now focusing on designing

frameworks to plan to test wisely while limiting expensive on-road testing. We
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discuss more on the testing and statistical evidences of AI systems safety in

Section 3.3.

3. Related Surveys and our position185

Since safety concerns of AI systems have gained attention in the last few

years, many literature reviews, technical reports, and surveys have consolidated

the relevant state-of-the-art approaches. We collected the related surveys while

searching for the primary studies.

1. Based on the search strings (discussed in detail in the next section), we190

first collected the secondary studies (literature surveys, questionnaires, reports,

summary, case studies, etc.). We found more than 40 such studies that matched

with the relevant search keywords.

2. We selected only 14 studies based on their relevance to safety, perspective,

and coverage. The selection criteria were as follow:195

(i) The study is published between 2015-2020.

(ii) The study is peer-reviewed and written in English.

(iii) The study is focused on the safety aspects of AI, ML, intelligent software

engineering, safety-critical systems (that use ML heavily).

The studies that review the application of various ML techniques to auto-200

mate software engineering or other domain (without covering the safety aspect)

have been excluded. We have deliberately included three recent studies on the

integration of the software engineering process and ML life-cycle as part of our

related work (despite violating the third criteria) [22, 23, 24, 25]. These studies

do not solely focus on the safety aspects of intelligent software. However, we205

include them as these studies solidify our view of performing a literature survey

on safety approaches from a software engineering perspective.

We can generally categorize the selected secondary studies as– domain-based

(concerning a particular domain such as automobile, robotics, etc.), AI algo-

rithm/ ML techniques-based (focusing on a particular type of algorithm or210

ML technique like deep learning, reinforcement learning), general AI systems-
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based(surveying a vast range of safety-related research efforts applicable to all

AI systems in general), and engineering process-based (surveys the safety ap-

proaches from a systematic engineering process point-of-view that considers col-

lective contributions from diverse stakeholders at each phase).215

There are a few domain-specific surveys [26, 27, 28, 29, 30] in the field of

safety-critical systems such as driverless cars and robotics, that cover a vast

range of engineering aspects such as design, control, architecture, etc. However,

it is either difficult to understand the safety concerns of AI algorithms or ML

techniques used in these systems [26, 27, 28] or it is difficult to generalize the220

safety concerns for all safety-critical domains [29, 30].Numerous reviews have

been published on the robustness of ML techniques [31, 32, 33, 34] and assurance

of ML-based systems [35, 36, 37, 38]. The target readers of those surveys are

expected to have deep technical knowledge in ML/AI algorithms to comprehend

such studies as they entail many minute technical details. There are also a few225

technical reports, research agendas published by Stanford AI research groups

[39, 40]. These reports cover a broad range of topics related to AI safety, security,

privacy, fairness, trust, etc. While these studies provide an overview of the scope

of research contributions in the field of safe AI, analyzing the current research

efforts from an engineering process perspective is not in the scope of those230

studies.

Our paper differs from the other three types of surveys mentioned above in

various ways. The objective of this paper is not to discuss the detailed techni-

cality of state-of-the-art safety approaches. Rather our goal is to explore how

research efforts fit from a layered systems engineering perspective. Recently,235

few researchers and practitioners have conducted literature reviews, question-

naires, surveys to understand the challenges of engineering ML-based software

[22, 23, 24, 25]. Wan et al. and Ishikawa et al. have conducted questionnaire

surveys including experienced ML-based software engineers to summarize the

software engineering challenges and corresponding sources of difficulties faced240

during the development and validation of such software [22, 25]. Serban et al.

have conducted a survey including ML practitioners to analyze how software en-
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Related Surveys

Domain-based AI algorithm/ML technique-

based
General AI systems-based Engineering Process-based

2015

2016

2017

2018

Dewry et al. [39]

Chakraborty et al. [32]

Xiang et al. [35]

2019
Xu et al. [33]Luckcuck et al. [26]

Gracia et al. [34]

Mesudt Ozdag [31]

Guiochet et al. [28]

Stanford AI Safety 

Report [16]

Yurtserver et al. [27]
2020

Our Paper

Exclusively from safety perspective 

(multi-layered review)

Lawakatare et al. [24]

General SE challenges for ML

Figure 1: Related surveys and out position

gineering best practices are being used by the ML teams and how effective those

practices are in the case of ML-based systems [23]. Silverio et al. have discussed

challenges of trustworthy AI-based autonomous systems in industrial settings245

and also have provided future directions on reducing the gap between the devel-

opment and operation of such systems [41]. Lwakatare et al. have summarized

23 software challenges and 8 solutions related to the large-scale ML systems

after conducting a literature survey [24]. In quite a similar direction, Anh and

Pekka have discussed the challenges and have provided a research agenda on250

continuous experimentation of AI software in large-scale systems [42]. Few of

the challenges discussed in our survey overlap with their findings. However,

their studies do not focus on safety. Instead that study focus on the quality

attributes of software in general.

To the best of our knowledge, no survey has been done yet to analyze the255

relevant research areas through the lens for diverse stakeholders and their con-
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tribution to the engineering process from a safety perspective. Our paper aims

to find the scope of collaboration to fill the gaps in the continuity of the recent

research efforts when analyzed from a multidisciplinary engineering process per-

spective. Fig. 1 summarizes the relevant literature surveys and our position.260

4. Research Method

4.1. Research questions

We have already explained the research questions in Section 1. RQ1 is

slightly different than the rest of the questions as we try to answer RQ1 based on

the overall view of how a complex AI system is conceived, designed, developed,265

verified, and maintained. We envision a three-layered conceptual framework

that facilitates further analysis of the recent research efforts along the layers.

We describe our vision in detail in Section 5 and explore the state-of-the-art

safety approaches based on our conceptualization of the problem space and

solution space regarding safe AI.270

4.2. Search strings used

We conducted the search on 29-Oct-2020 with the search strings to retrieve

the recent studies as mentioned in Table 1. We initially attempted to search

based on the title and abstract. However, we were overwhelmed by more than

10,000 spurious search results for most of the queries. Therefore, we decided to275

limit our initial search on the titles and follow snowballing method afterward

to retrieve other relevant studies that were missed out by the search operation.

The search results were filtered by the range of publication years from 2005 to

2020. In case of Springer, the search results were further filtered by discipline

and sub-discipline.280

4.3. Search Strategies and data sources

We conducted the search in two phases. In Phase-1, we directly searched

databases like IEEE xplore, ScienceDirect, Springer-link, ACM Library, Scopus
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IEEEXPLORE

1011 studies

SPRINGERLINK

1305 studies

ACM

589 studies

SCIENCEDIRECT

718 studies

ARXiv

101 studies

3709 Studies

734 Studies

42 Studies

2,229 Studies

Exclusion of duplicates and short 

papers (less than 4 pages)

Exclusion based on title, 

abstract and keywords

Forward/backward 

Snowballing

Exclusion based on 

introduction and conclusion

216 Studies

 87 Studies

Exclusion based on 

full-text

26 Studies

113 Studies

Scopus

85 studies

112 primary studies

Exclusion based on the 

quality assessment

Exclusion based on 

full-text

Laws and 

ISO safety 

standards

(29)

Figure 2: Study selection process

12



and arXiv. We collected research papers published within the 15-year time pe-

riod between 2005 and 2020. After getting a moderate number of search results285

from these data sources, we followed the forward and backward snowballing ap-

proach [43] to find new relevant papers (from the references and the citation

lists) in Phase-2.

4.4. Study Selection Process

In Phase-1, we initially found more than 3000 papers directly by performing290

database search. However, not all of those studies were relevant to our literature

review. Our main aim was to collect studies focusing on the intersection of

safety engineering, artificial intelligence, and software engineering. Therefore,

for example, studies focusing only on safety engineering without considering

autonomy, AI techniques, or SE process were excluded from the collection. The295

detailed inclusion and exclusion criteria are described in Table 2. In Phase-1,

we removed duplicates and excluded irrelevant papers after reading the title,

abstract, and in some cases introduction. In Phase-2, we read the full-text to

thoroughly understand the motivation and contribution of each work. Finally,

we selected only 112 papers that we agreed were relevant and significant for our300

study (Fig. 2).

4.5. Study quality assessment

We assessed the quality of the selected studies based on a set of six questions.

A complete list of the questions is provided in Table 3. Most of the questions can

have three answers: Yes (Y)=1, No (N)=0, Partial (p)=0.5 except for Q3, Q4305

and Q6. Q3 can only have two answers Y=1 for general and N=0 for a domain-

specific solution. Similarly, Q4 has two answers Y=1 for contribution to research

and N=0 for contribution to practice. In general, the papers that scored above

4 out of 7, were selected. Each of the selected papers was thoroughly assessed

by each of the authors individually and any disagreement was discussed till a310

consensus was reached.
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Table 1: Search strings used to retrieve relevant primary studies

Objective Search String

To retrieve studies on Artificial Intelligence and

safety or trust or reliability or assurance-related

concerns and corresponding solutions

“artificial intelligence” AND (safe OR

trust OR reliab OR assurance)

To retrieve studies on safety, reliability, risks or ro-

bustness or assurance-related concerns of machine

learning or deep learning and corresponding solu-

tions

(“machine learning” OR “deep learning”)

AND (safe OR robust OR risk OR reliab

OR assurance)

To retrieve studies on automotive industries or

any autonomous/unmanned safety-critical sys-

tems and safety-related issues.

(auto OR unmanned OR safety-critical)

AND (safe OR verification)

To retrieve studies on machine learning (espe-

cially neural networks)-based systems verification

or testing

(“machine learning” OR “neural net-

works” OR “deep learning” ) AND (verif

OR testing)

To retrieve studies that focus on the correlation

between software engineering, requirements engi-

neering, and machine learning.

(“software engineering” OR “require-

ments”)AND “machine learning”

Table 2: Overview of the inclusion and exclusion criteria

Inclusion Criteria Exclusion Criteria

1. Primary studies or safety standards.

2. Studies published in the English language.

3. Peer-reviewed studies except for the studies

published on Arxiv.

4. If the study is published on Arxiv then it

should have at least one citation by a peer-

reviewed paper.

5. Studies that focus on AI, ML intelli-

gent Software Engineering and corresponding

safety-related issues.

6. Studies published between 2005 and 2020.

1. Secondary studies.

2. Duplicate studies. (only longer and

more complete versions were accepted.)

3. Studies that only focus on safety-

related research (safety lifecycle, safety

artifacts, etc,) without consideration of

the recent advancement of AI.

4. Short studies (less than 4 pages).
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Table 3: Quality assessment criteria

QA Scenario Component Security Requirements

Components

Are the motivation and goal of the study well ex-

plained in the paper?

Y=1, N=0, p=0.5

Is the proposed approach adequately explained with

necessary details?

Y=1, N=0, p=0.5

Is the study applicable to all domains or to a specific

domain?

Y=1, N=0

Does the study provide value for research or practice? Y=1, N=0

Is there any discussion about the results or threats to

validity?

Y=1, N=0, p=0.5

Does the study has a section on related work? Y=1, N=0

Does the study provide future direction or open scope

for further research or investigation?

Y=1, N=0, p=0.5

Except for one paper that was published in IEEE software magazine, all

other papers qualified to be part of our study. The reason we excluded that 4

page long paper on “Software engineering for machine learning applications” was

it lacked detailed explanation of the solution and discussion on the limitation315

as it was only a theme issue. We made another exception regarding the quality

assessment in case of safety standards. Most of the articles discussing standards

are from web-based search or part of technical reports, etc. These articles

did not go through the rigorous quality assessment process as per the criteria

mentioned in Table 3. Instead, they have been selected based on their timeliness320

and relevance to our study.
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5. Three-layered conceptual framework for safety-driven AI system

engineering

As appropriately argued by Koopman, many different areas require coordi-

nation to ensure safety [44]. Acknowledging the fact that there is a cognition325

gap among the various disciplines involved in the process of risk analysis, we

need to provide a set of guidelines to the diverse stakeholders. To formalize

the participation and responsibility of each stakeholder, we propose a three-

layered framework to conceptualize complex intelligent systems (Fig. 3). The

framework shows how a safe output space is achieved for such systems start-330

ing from an initial incomplete problem space. We can visualize how diverse

the stakeholders and the primary artifacts are, in each layer at a system level

and ML-based component level. In the days of AI, at the ML-based compo-

nent level, the stakeholders come from AI or ML specific background. This

was not very common in the case of traditional systems without any machine335

intelligence. These paradigm shifts bring in a lot of challenges in exploring the

problem space and solution space. The layers of the framework are listed below:

• Problem definition layer:

In this layer, at a system level, domain experts and requirements engineers

work closely with users to gather requirements. The aim of these partici-340

pants is to understand the expectations of the users and the society, goals

of the system, possible situations/scenarios, etc. With the introduction

of ML-based components, conceiving a rich problem space has become

more complex than in traditional systems. ML experts, data scientists,

HCI experts need to work closely with system-level stakeholders to under-345

stand the ML model requirements, data requirements, domain definitions,

quantitative targets, etc.

• Safety-driven modeling and development layer:

In this layer system engineers and safety experts work in collaboration to

perform system-level risk analysis, risk handling of emergent behavior of350
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the system. In other words, in this layer risk-minimizing safety goals, re-

quirements, etc. are derived from system-level risks. Safety standards are

followed throughout the process of designing and developing the system.

At the component level, inherent risks of ML models, effects of adversarial

attacks, corner cases are identified. Unlike traditional software-intensive355

systems, ML-based components are designed and trained based on objec-

tive functions following AI/ML specific safety standards. Safe learning

decisions on the safety-aware rewards, penalty, etc. are made by the ML

experts at this layer.

• Verified safety compliance layer:360

A system is assumed to be acceptable safe only when the involved stake-

holders gain enough confidence in the emergent safe behavior. Tradition-

ally, a system is usually verified by formal models and various types of

testing. QA experts and users play a key role to come to a consensus

regarding the level of safety of the system. However, safety assurance365

and verification have become extremely challenging with the inherent un-

certainty and data dependency of ML models. Therefore, at this layer,

ML experts, HCI experts, data scientists play a crucial role not only to

validate training and testing data but also to evaluate overall robustness,

scenario coverage, performance, etc. of the ML-based component.370

All the above-mentioned layers are based on a layer of basic factors, like

assumptions, level of autonomy, regulatory constraints, financial constraints,

ethical constraints, data constraints, etc. This framework provides better visu-

alization of how a safe output space of AI systems is designed across the layers

starting from the initial naive problem space.375

5.1. Layer-1: Challenges and research efforts

In the last few years, researchers started discussing the challenges faced

by software engineers while working on ML techniques for complex AI systems

[22, 45, 46, 47]. As most of the current intelligent systems are software-intensive,
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Figure 3: An integrated three-layered conceptual framework for AI systems engineering
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we choose to analyze the challenges from a software engineering perspective in380

detail. Software research community has always asserted the importance of ini-

tiating the engineering process by having comprehensive understanding of the

problem space and expectations of customers (users).We reflect the same under-

standing in our layered framework (Fig. 3). In order to successfully explore the

safe solution space in Layer-3, the first step should be to start with exploration385

of the rich and relevant problem space. Therefore, in this subsection, we ex-

plain the challenges faced by requirements engineers, domain experts, and data

scientists in the early phase of engineering.

(1) Shortcomings of traditional requirements engineering-driven

approach:390

With the advent of deep learning, the traditional end-to-end RE process

became futile. It is hard to make users’ expectations explicit when the operating

environment itself is extremely uncertain. Stating all possible ‘shall’ statements

in the early phase of engineering is impractical with the inherent uncertainty and

lack of clarity on the relevant context. Bosch et al. discuss that requirements-395

driven approaches may need to be complemented by other approaches [48].

The authors identify three distinct approaches that may coexist during the

development of intelligent software:

(i) RE-driven: Development according to well-understood specifications.

This approach may be used only when the new feature is well understood.400

(ii) Output/data-driven: Development according to a given quantitative tar-

get. The goal here is to improve the metric by experimenting with different

solutions.

(iii) AI-driven: Development of components using ML/DL based on an al-

ready available large dataset.405

The authors envisioned a holistic integrated development approach (DevOp)

incorporating all the above-mentioned approaches in which the system consists

of traditional software and AI components and also there is scope for continuous

deployment. However, this integrated framework requires further validation

and comprehensive guidelines for its usage. We need to further understand the410
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real challenges at Layer-1 by thoroughly investigating the core issues from RE

perspective.

(2) Understanding the problem domain:

Problem domain understanding is equally important in the case of tradi-

tional and intelligent system engineering practices. It is always one of the most415

complex activities during the early phase of engineering. The complexity is

even higher in systems with ML components where the system learns about

the domain-specific concepts through training data [22, 49]. Rahimi et al. [50]

explain this challenge using an example from an automated pedestrian collision

avoidance system. The concept of ‘pedestrian’ is not clear in terms of what it420

means in a particular context. A person walking a bike (instead of riding it) or

a person in a wheelchair should also be included in the semantics of pedestrians

to ensure safety. The author suggested that a thorough understanding of the

domain is possible by:

(i) Benchmarking the domain425

(ii) Interpreting the domain dataset

(iii) Interpreting the domain learned by ML model for further validation

The authors proposed to create a domain ontology based on the web search

result of the domain concept (‘pedestrian’ in the example). This ontology can be

further used to assess whether the training data represents the problem domain430

as depicted in the ontology by extracting features from the dataset. Incorrect

or missing correlation between ontology element and the dataset can be helpful

in identification of the gap or incompleteness of the dataset.

(3) Setting quantitative targets (functional requirements):

The main objective of RE activities for any system is to state the users’435

expectations explicitly. However, setting explicit quantitative targets (which

are often referred to as functional requirements of ML component) is a great

challenge, not only because it is hard to declare desired output, but also it is

difficult for users to understand ML related performance metrics such as recall,

precision, etc. [51]. Data scientists need to take part in RE actively to help440

the client to set a metric that is not too technical, yet scientific enough to
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measure the performance. For example: ‘Lift’ (improvements of performance)

can be explained by introducing a comparison of ML predictions to random

predictions. More about these topics are discussed in the upcoming sections on

setting targets for validations and testing.445

(4) Setting qualitative targets (non-functional requirements):

While establishing quantitative targets is already gaining the attention of

the research community, a few researchers are also discussing qualities or non-

functional requirements associated with the functional requirements [52, 53]. It

is argued by Horkoff, in today’s time we are unknowingly relying more on qual-450

ity than quantity to gain trust [53]. For example: rather than relying on 99.99%

of the accuracy of the target to ensure safety, more efforts need to be invested in

justifying transparency, testability, explainability, reliability, fairness, etc. She

also mentioned that further research needs to be conducted regarding a thorough

understanding of the new definition, catalog, target, and trade-offs for NFRs for455

different kinds of ML algorithms used in intelligent systems. Nakamichi et al.

[54] made a recent contribution by proposing a quality model, quality charac-

teristics, and a measurement method for ML-based software systems. One of

the most important qualities from the safety perspective is the robustness of the

ML model, especially for perception tasks where a slight change in the input can460

cause misclassification. Hu et al. [55] proposed how to formally specify robust-

ness requirements for such ML-based component by identifying the invariant

and equivariant. Each robustness requirements mainly consists of three compo-

nents: a formal definition of transformation over the inputs, a range of values

for transformation parameters, and a corresponding indication of invariant and465

equivariant. However, deriving an exhaustive list of invariant and equivariant

is an open area of research for ML-based components deployed in an uncertain

environment.

(5) Lack of requirements analysis and modeling techniques to ad-

dress uncertainty:470

To analyze the intrinsic uncertainty and unpredictability of ML models,

concrete analysis and modeling technique is required to be performed during RE
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phase. However, not enough attention has been paid to end-to-end modeling

and analysis methods. Recently, F. Ishikawa proposed a goal-based evidence-

driven RE modeling to analyze the goals and unresolved uncertainty of ML475

models [56]. The authors explained how the model can depict the evidences

captured by experiments and operation to validate or invalidate the feasibility

or performance level. More efforts need to be invested in developing automated

tools to link between decision making by the ML models and the collected

evidences during testing and operation.480

(6) Explaining ‘black-box’ to users:

‘Safety’ and ‘trust’ are correlated. Lack of transparency/explainability leads

to weak assurance of safety and as a result users or the society as a whole lack

trust in such systems. Therefore, some of the literature emphasizes the impor-

tance of the explainability of AI systems. Kohl et al. [52] report that a lack485

of understanding of some phenomenon motivates certain groups of stakeholders

to seek explanation in a certain context. Therefore, we can consider including

explainability requirements as a new addition to the non-functional require-

ments family. While eliciting explainability requirements, other requirements,

such as security and cost, may conflict with them. This will eventually lead to490

exploring the rich problem space even further by performing trade-off analysis.

Vogelsang and Borg mentioned that in case of ML, explainability is twofold:

explain what has been learned and how each prediction has been made by the

model (in the context of the predictive model) [51]. Although explainable AI

systems have been garnering attention recently, the ML research community495

is yet to formalize situations that should demand an explanation. Moreover,

further research is necessary on the appropriate level of abstraction to attain

the required explainability of a system.

(7) Declaring hidden consumers:

For any system, it is of the highest priority to know the target users and500

consumers of the output. Complex AI systems with one or more ML compo-

nents are often developed without a proper understanding of who is accessing

the output (e.g., the prediction output directly or log files indirectly later) [45].
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Inadequate access control strategy can have a significant impact on the over-

all emergent safe behavior of the systems as undeclared consumers may use the505

output in an unintended way [47]. Belani et al. express their concern over unde-

clared consumers as this hidden risk factor has not been sufficiently scrutinized

[49]. We believe that identifying and documenting the right set of consumers are

essential activities at Layer-1 to safeguard the system from unintended usage in

the future.510

Discussion:

We believe that research on RE for AI systems is at its beginning. Only

a limited part of the literature has discussed the challenges faced at an early

stage of AI systems engineering. Instead, research has focused on the technical

excellence of AI algorithms and their applications. However, as we discuss the515

challenges at Layer-1 in this subsection, we summarize the current understand-

ing of RE and SE research community for AI systems in Table 4. This table

shows the latest guidelines for each of the phases of RE and specifies recent

advances on new types of requirements that should be part of the requirements

specification in the days of AI.520

5.2. Layer-2: Challenges and research efforts

In this section, we focus on the analysis and design issues that are closely

related to safety concerns. As shown in the framework, in Layer-2, safety engi-

neers, designers, developers, ML experts are required to collaborate to explore

the safety constrained design space. Therefore, we will discuss risk analysis,525

safety requirements, safety standards of autonomous systems.

(1) Safety-driven design of complex systems:

The preferred way to build a safe system is to consider safety from the

very beginning of requirement engineering. Firesmith described a taxonomy for

four kinds of safety requirements named as- pure safety requirements, safety-530

significant requirements, safety constraints, and requirements for safety systems

[57]. However, elicitation of safety requirements was out of the scope of this

work. To the best of our knowledge, the necessity of a change in the tradi-
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Table 4: Summary of state-of-the-art RE approaches for safe and trustworthy AI

RE Activity Guidelines

Requirements Elici-

tation [22, 50, 49, 54]

-Include data scientists and legal experts

-Benchmark the domain

-Elicit new data sources

-Identify sensitive/protected features of the data

-Situations that demand an explanation to help users

Requirements Analy-

sis [53, 56]

-Discuss performance measures that are easily under-

standable for users

-Conditions for data pre-processing, cleaning, etc.

-Required level of automation needed in the process to

meet the constraint

-Evidence-driven goal-based requirements modeling and

analysis

(Insufficient attention is paid to requirements analysis

activities)

Requirements Speci-

fication [50, 52, 53,

51, 54, 55]

-Data requirements

-ML model requirements

-ML process requirements

-Quantitative targets

-Measurable qualitative targets

-Explainability requirements

-Ethical and legal requirements

-Robustness requirements

Requirements V & V

[50, 55]

-Confidence in data

-Data dependencies

-ML process requirements

-Quantitative targets

-Robustness targets

(Not enough work is done on requirements validation)

Requirements Evolu-

tion [22, 46]

-Documenting dataset and model versions

-Data dependencies

-Requirement-data-feature-output traceability

(Insufficient attention is paid to requirements evolution)
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tional accident model due to the emergence of software was first identified by

Leveson [58]. The authors explained how the traditional accident model could535

be enhanced by accommodating social, cultural, and organizational aspects. A

complete hazard analysis methodology named STAMP (System Theoretic Ac-

cident Model and Process) was proposed by researchers in [59] and [60], in

which accidents were viewed as control flaws (failure in the interactions among

the components) instead of a component failure. This methodology not only540

helped to analyze the source of hazards and deriving safety constraints but also

helped to make appropriate design decisions to enforce the derived constraints.

This safety-driven design approach STPA (System Theoretic Process Analysis)

is explained in [61] with the help of a case study on spacecraft. Although this

work encompassed the socio-technical factors influencing the design of a safe545

system, it precludes the hazards caused by human error. Moreover, this work

does not exclusively address the inherent uncertainty and opacity of ML-based

software-intensive systems. Therefore, we will not probe this research further.

Kuper et al. introduced the concept of verification-friendly design of neu-

ral networks [62]. Varshney explained how four common safety strategies (in-550

herenetly safe design, safety reserves, safe fail, and procedural safeguards) can

be mapped to an ML context [20]. The authors emphasized that ML models

are very different in terms of the inherent uncertainty in train and test data,

and their probability distribution. Rejecting a less confident decision made by

the mode can be an option to fail safely. However, it is important to define the555

decision boundary carefully as the distance from the boundary is not always

inversely proportional to confidence. A part of the input space with low density

can contain much epistemic uncertainty as the boundary may be based on in-

ductive bias. In the same direction, Gu and Easwaran proposed Feature Space

Partitioning Tree (FSPT) to partition feature space and to reject input instances560

from the low-density feature space [63]. In the case of reinforcement learning,

safe outcome has been confirmed by introducing risk-aware policies and rewards

[64], safety-aware planner [65], safety supervisor [66], etc. Although these con-

tributions were very significant in terms of ensuring safety at the ML component
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level, they lack insight into how the safety standard can be defined and mapped565

against system or sub-system level safety goals.

(2) Lack of method to model uncertain environment including hu-

man behavior:

For safety-critical AI systems, combinations of numerous variables lead to an

unlimited number of situations to model, which results in an impractical verifi-570

cation process. The complexity amplifies when human is in the loop. Human’s

behavior is mostly variable and uncertain. Therefore, for semi-autonomous sys-

tems, the problem of environment modeling is two-fold. Research on verification

of AI systems can get momentum only if there is a well-understood technique

to model the uncertain environment. As complete formal modeling of the un-575

certain environment seems to be challenging by many researchers, attention is

paid towards introspective modeling of the environment. For example: identify-

ing and analyzing the assumptions that a system makes about its environment

can be helpful to verify whether the system is capable of monitoring the right

variables or not. Seshia et al. have addressed such issues with the help of con-580

trol theory. Extraction of monitorable assumptions is proved to be feasible for

simple controllers [67, 68, 69]. To address the issues of modeling unpredictable

human behavior, one way could be gathering data about real and simulated

environments to learn about the environment model. Some researchers have

shown it to be effective for verification and control of an autonomous vehicle to585

generate human behavior models from driving simulators and human subject

experiments [70, 71, 72].

(3) Scenario-based safe design and development of autonomous

systems:

For safety-critical systems like driverless cars, deployed in an uncertain en-590

vironment, collecting sufficient safety requirements is an exhaustive task. The

risks and potential hazards are mainly hidden in the operational world and its

numerous variations. Therefore, very recently, researchers started focusing on

purposefully varying the operation scenarios of systems to elicit safety require-

ments in the early phase of the system life-cycle. Bach et al. [73] presented a595
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methodology for a model-based design of scenarios from real-world test data.

Abstraction of temporal and spatial information act as the key enables of not

only coherent modeling of scenario but also support specification of requirements

and derivation of test cases. In a similar direction, Till et al. [74], proposed three

levels of abstraction for scenarios along the V-model of development process fol-600

lowing ISO-26262 (this standard will be discussed later). These researchers

elaborated the concept of ‘Scenario’ and defined three layers of abstractions of

scenarios:

(i) Abstract functional scenario in concept phase: Involves identifying semi-

formal hazardous scenarios including operational scenarios and malfunctioning605

behavior.

(ii) Detailed logical (technical) safety scenarios in development phase: In-

volves describing scenarios including parameter ranges of the state values that

are used to represent functional scenarios.

(iii) Concrete scenarios for validation and verification: These scenarios repre-610

sent the operational scenarios with concrete values of each parameter. Proposed

process steps of the usage of such safety concerned scenarios can be very helpful

to generate the artifacts at each step and to maintain traceability among them.

(4) Safety standard to guide for analysis and design process:

Standards are believed to be one of the best ways to guide and assess (in later615

phases) the development of a particular system through specification. Espe-

cially for AI systems, standards can provide explicit specification/requirements

for explainability, robustness, fail-safe design [75]. ISO and IEEE are the two

leading bodies that have been developing various standards regarding safety re-

quirements of autonomous machinery. Table 5 summarizes some of the relevant620

standards in this area. However, none of them exclusively considers AI. The

use of ML commences an overall paradigm shift in the design and development

process. Unfortunately, these standards fail to ML-specific concerns. Neverthe-

less, some of the safety considerations to ensure safety are rightly identified by

Google [76].625

1. Is the objective function appropriate?
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2. Has the exploration space been sufficiently constrained?

3. Does the model’s training reflect the current real world?

4. Can the risk of data poisoning be mitigated?

5. Has the AI system been adversarially tested?630

Best practices to address these concerns should be collected in formal stan-

dards. The formulation of safety standards entails risk analysis, risk control, and

risk monitoring [77]. These standards are mostly under development. Formaliz-

ing AI safety standards is an ongoing endeavor. Many researchers are working

on the same from different perspectives. For example, Ozlati and Yampolsky635

mention the diversity of AI systems in [77] and considered that different cate-

gories of AI systems may have diverse risks and mitigation strategies. Therefore

the authors suggested using a modified Delphi methodology study as a start-

ing point of a standing body that can develop and evaluate AI safety standards

under AI SDO. Keeping the diversity of AI systems in mind, the authors recom-640

mended that the modified Delphi study should cover separate risk assessments

for different system categories. Luo et al. focused on environment-centric safety

requirements of automated unmanned systems [78]. Environment safety require-

ments are elicited from the entities of the environment- other systems, human,

constraints. The authors classify such requirements along MAPE-K process.645

After conducting a literature survey, the authors conclude that few gray areas

need further research, such as methodology to solve safety concerns (collision

avoidance), optimizing safety constrained learning technique (MDP), etc. Most

discussed domain-specific standards in the days of AI: Recently, the automotive

industry has made significant progress in developing and testing driverless cars.650

However, as of today, neither the industry nor the government can fully assess

the safety of self-driving cars. Therefore, there is a sudden rush to set standards

for such AI-based autonomous vehicles among the public organization like IEEE

and also public sectors like Safety First for Automated Driving (SaFAD) led by

Audi, BMW, etc. In this subsection, we will explain some of the standards655

related to an autonomous vehicle in detail.
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ISO 26262. ISO 26262 is the derivative of IEC 61508 [79, 19]. It mainly covers

automotive development, production, and maintenance of safety-critical sys-

tems. The key component of ISO 26262 is the automotive safety lifecycle (ASL)

which describes the fundamental concepts of safety plan, safety manager, safety660

review and audit. ASL consists of six phases: management, development. pro-

duction, operation, service and decomission. This standard also defines the

automotive safety integrity level (ASIL). Based on safety analysis of the crit-

ical functions of the system, a risk analysis is performed. The risk analysis

combines the probability of exposure, controllability of a driver, the severity of665

outcome resulting in ASIL from A to D. As per this standard, development and

verification practices should correspond to the corresponding ASIL. However,

as argued by Borg et al. [36], with the advent of ML algorithms (especially

less transparent DNN), traditional standards fall short. Salay et al. analyzed

ISO 26262 from ML perspective to identify the key factors of conflict [80]. The670

researchers found gaps in the software development requirements of ISO 26262,

and proposed requirements to fill those gaps. One of the major contributions

of their work is the elaboration on connecting data to safety concerns while

working with ML algorithms. Prior knowledge of the function to be performed

by ML component plays a significant role in fostering safety. The ways input675

can change without affecting the output are termed as invariants. Invariance

to lighting level, positions, etc. is directly associated with the safe outcome

of the learning model. Similarly, equivariants describe types of change in in-

put that should result in a particular type of change in the output. Along with

these two specifications, different kinds of constraints like probabilistic, pattern-680

based, and context-based constraints on the input and output and control the

safe behavior of ML component. Moreover, analyzing data distribution, its cov-

erage of edge-cases also enable developers and safety engineers to assess the

expected safe behavior of the AI-based system. The researchers also mention

that model selection, feature selection, training, and testing specification are685

the key artifacts in arguing the safety case of an ML algorithm.
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UL-4600. Koopman et al. working with UL (Underwriters’ Laboratories) pro-

posed an initial draft of UL-4600 standard for fully autonomous vehicles [81].

To the best of our knowledge, UL-4600 is the latest and the most advanced

standard that aims to address the challenges of the full autonomy of HAV.690

The traditional standards lack flexibility as they are usually census-based and

updated every 5 to 10 years. However, in the days of AI, developers are ex-

ploring new technologies rapidly to provide a better solution to the concerned

problem. Therefore, flexible standards like UL-4600 gained attention in recent

times. UL-4600 does not prescribe direct guidance to the proper development695

process. Rather, it guides on building the safety case (which will be discussed

later in the next section) for HAV [82]. A safety case is a very important artifact

for safe systems design. Identified topics that are planned to be addressed in

this standard are:

(i) Definition of operational design domain (e.g., weather, scenarios, etc.)700

(ii) ML faults (e.g., training data gaps, etc.)

(iii) External operation faults (e.g., fault of other vehicles, etc.)

(iv) Faulty behavior of the non-driver humans (e.g., pedestrians, etc.)

(v) Non-deterministic system behavior (e.g., test planning, etc.)

(vi) High residual unknowns (e.g., requirements gaps, etc.)705

(vii) Lack of human oversight (e.g., passenger handling, etc.)

(viii) System-level safety metrics.

This standard emphasizes that it is more effective to continually evaluate and

improve the residual risk present in the system than to conform to a standard

during deployment. Therefore, developers need to be actively involved and take710

responsibility for safety risk identification and self-assessment over the iterations

of the development life-cycle.

Discussion: In 2020, several new standards from various sources for AI-based

systems are likely to be rolled out [90, 91, 92, 93, 94, 95, 96]. We could not discuss

these standards in detail as most of the standards are still under development715

and not many open-access documents are available regarding these standards.

However, as Riccardo Mariani [97] mentioned that, with the arrival of the new
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Table 5: Overview of the safety standards and the relevant autonomous systems

Safety Standards Autonomous Systems

ISO/DIS 3691-4 [83] Driverless trucks

ISO 13482 [84] Personal Care Robots

ISO 19014 [85] Earth moving machinery

ISO17757 [86] Earth moving machinery and

mining

ISO 18497 [87] Agricultural machines

IEC 62267 [88] Automated urban guided trans-

port

ISO 26262 [19] Road Vehicles

ISO/PAS 21448 [89] Road Vehicles

safety standards from various sources, it is expected that those standards will

be written from diverse perspectives of AI-based systems. Therefore, the main

goal should be to analyze those standards and minimize the overlap.720

5.3. Layer-3: Challenges and research efforts

As rightly argued by J. Morton et al., Trust is the prime concern that needs

to be established before a complete release [98]. Many researchers focused on

validation and verification of the system life cycle to prove that the system

is acceptably safe enough to be deployed. In this subsection, we will explain725

the challenges to perform end-to-end validation and verification of AI systems.

Seshia et al. explained the shortcomings of the current practices and proposed

to move towards the paradigm of Verified Artificial Intelligence [99]. Further, we

discuss the directions that researchers have been following recently to address

those challenges.730

(1) Lack of formal specification to verify the system:

Traditional formal verification is mostly founded upon strong mathemati-

cal statements of the way system should behave. However, for ML-based sys-
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tems, it is extremely difficult to describe the expected behavior precisely in a

mathematical way. For instance: there is no concrete method for a module of735

an autonomous car that uses computer vision to perform object recognition,

human-object classification. As it seems to be nearly impossible to formally

specify the exact behavior of any ML component, few researchers have tried to

solve the problem from a different perspective. Instead of formalizing the com-

ponent level behavior, end-to-end system-level behavior specification can be740

used for verification purposes. Seshia et al. suggested that specification mining

techniques can be used in such cases [100]. Jan Leike et al presented a suite of

reinforcement learning environment to assess the conformity with the intended

safe behavior [101]. The authors also classified various safety problems in the

case of RL. For example, specification problems, safe interruptability, reward745

gaming, safe exploration, etc. However, the cost of verification and validation

of such components is not trivial. Especially for domains like automotive sys-

tems, aircraft systems, verification approach is not scalable for the real world

unless they are designed that way. However, more research is required to ensure

that the intention of the designer is rightly articulated into the ML component750

through well-designed cost and reward functions.

(2) Lack of system modeling approaches for data-driven ML com-

ponents:

Formally modeling complex deep neural networks with millions of data, sev-

eral layers, stochastic behavior, and hundreds of features to learn poses a chal-755

lenge. To model such ML-based components, an explanation based on general-

ization and abstraction is needed and both input and probabilistic (uncertain)

output need to be formally modeled and explained. Furthermore, such uncer-

tain output and its corresponding effect on the system-level specification needs

to be formally modeled. More significant research on formalism of Markov De-760

cision Process [102], probabilistic logics [103, 71], and counterfactual reasoning

can lead to the mitigation of the problem of systematic modeling of data-driven

ML component.
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(3) Insufficient method for quantitative verification:

Apart from formal specification and modeling of ML components, training765

and testing data play a very important role in verification of the ML algorithm

or component. The behavior of a frozen learning model (with no continuous

learning strategy) may vary with a small perturbation of the test data, These

adversarial perturbations pose a new challenge to verifying ML-based compo-

nent and using them as a part of safety-critical systems such as autonomous770

cars [104, 105, 106, 107]. Moreover, the traditional boolean outcome of the

verification and validation process is inadequate for ML. Quantitative require-

ments (data requirements, equivariant, and invariant specification, etc.) can

contribute to design a quantitative verification process. Semi-autonomous sys-

tems with both machine and human controllers can be considered as hybrid775

systems [108, 109, 110] and therefore can follow a probabilistic process of veri-

fication. As suggested by Seshia et al. in [99], randomized formal methods to

systematically generating training and testing data can be one of the options to

move towards formal verification of ML algorithms. Randomized formal meth-

ods need to be improved to address the constraints on the legal input and output780

space. Randomness requirements can define the output distribution. More rig-

orous research on constrained random sampling is expected to aid the process

[111]. Additionally, SMT solving can also be extended by combining with op-

timization problems to handle similar issues [112, 113]. An in-depth survey

verification of neural networks can be found in [35].785

Recent surge in research on safe deep neural network (DNN)

Safety assurance of neural networks in particular has received much atten-

tion in the last few years. Various strategies of testing have been adopted by

researchers to gain the confidence that the neural network can be safely used

in safety-critical systems; for instance, white box testing [114, 115], gray box790

testing [116], feature-guided black box testing [117], mutation testing [118, 119],

concolic testing [120], etc. Researchers have also paid attention to the testing

criteria suitable to ensure safe output of a DNN-based system [121, 122]. Byun

and Rayadurgam proposed a manifold-based ML testing framework [123]. The
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authors argue that compared to neuron coverage manifold-based coverage is a795

more effective measure of assurance. In the same direction, another recent study

by Harel-Canada et al. argued the unsuitability of neuron coverage as a V &

V metric for neural networks [124]. The assessment showed that the increase of

neuron coverage may rather hinder the way of generating an effective test suite

for neural networks. Falsification approach (testing against corner cases) has800

also gained interest among researchers as this approach can successfully analyze

the situation where a system may fail [125, 126]. In case of formal verification,

numerous approaches have been adopted by the researchers. For example, input-

output range specification-based verification [127, 128, 129, 130], solver-based

verification [131], reachability-based verification [132, 133, 134, 135], etc.805

(4) Difficult to perform rigorous run-time testing to address the

uncertainty:

Morton et al. proposed a method for deriving close-loop testing strategies

for safety-critical systems [98]. Koopman et al. made remarkable contributions

in the field of safety validation of automated vehicles [10, 13]. The authors pro-810

posed a phase-wise testing approach that not only mitigates the risks but also

identifies the assumption violations and the unexpected situation at runtime

[10]. Researchers have also focused recently on safety verification of autono-

mus systems with neural networks-based controller at the system-level in the

presence of hardware faults like lidar faults etc. [136, 137]. Although this ap-815

proaches can be helpful to reduce the testing load, more thoughts need to be

given towards the traceability of the testing artifacts from the system-level to

the component-level.

(5) Difficult to evaluate robustness against adversarial attacks on

ML-based systems (safety meets security):820

In the last few years, many researchers have expressed their concerns about

the potential threats to the stability of ML-based systems posed by adversarial

attacks. It is difficult to predict such attacks, and it is also complicated to model

the response of a component or system as a whole to such attacks. Therefore,

to develop a reliable system it is imperative to not only analyze the inherent825
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risks of ML-techniques, but also to protect them from intentional adversarial

attacks. To ensure functional integrity of modern ML-based systems safety and

security related knowledge should be used in combination. Szegedy et al., Biggio

et al. first paid attention to adversarial examples that can easily deceive neural

networks [138, 139]. If the attacker adds a small perturbation to an image with830

the proper calculation, a well-trained neural network (NN) can misclassify the

image with surprisingly high confidence. Such unstable behavior can lead to

catastrophic consequences in case of safety-critical systems that depend heavily

on computer vision to take decisions. Numerous recent works have analyzed

different ways to fool deep neural networks (DNN) [105, 140, 141, 142]. Bastani835

et al. proposed metrics to measure robustness against such adversarial examples

[143]. Very recently, Naseer et al. proposed formal methods to analyze noise

tolerance, training bias, and input sensitivity of neural networks [144]. Similarly,

RL agents can also be heavily manipulated by malicious attacks. Huang et al.

[145] have recently shown that RL-algorithms such as DWN, TRPO, A3C can840

be vulnerable to malicious inputs. Even a small perturbation can lure an RL

agent to move to an undesirable state and take unsafe action. White and black-

box attacks have been well investigated in this work. In case of white-box

attacks, the attacker is assumed to have access to the policy network. Whereas,

black-box attacker have only partial or no such information. The researchers845

show that white-box attackers are more effective than black-box attackers. It

is possible to confuse an RL agent with trained policy even in real-world black-

box scenario. For instance, lane following policy of an autonomous car can be

deliberately altered by placing a small mark on the road surface or road signs.

Defenses against adversarial attacks:850

Various defense mechanisms have been proposed to ensure robustness of ML

models. We briefly consider the two most discussed defense mechanisms.

(i) Adversarial training:

This is a brute force process of generating as many adversarial examples

as possible and using them to train the model in advance. Since Szegedy et855

al. [138] showed the existence of adversarial examples to fool DNNs, many
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researchers focused on ensuring robustness of learning models from such ad-

versarial attacks [140, 146, 147]. As discussed by Hazan et al., dealing with

adversarial perturbation can eventually help to optimise a ML model in a more

robust way [148]. One of the major challenges faced in training DNNs with860

adversarial examples is synthesizing a sizable number of adversarial examples.

Various ways have been proposed to synthesize such examples in whitebox set-

tings [106, 107, 138, 140, 149, 150]. Another challenge is to generate physical-

world adversarial examples (2D photos, adversarial patches, 3D prints, etc.).

These physical or real-world adversarial examples have been demonstrated for865

various domains such as face recognition, image classification, speech-to-text,

etc. [151, 152, 153].

(ii) Defensive distillation:

In this defense mechanism, a model is trained to provide outputs in terms of

probability instead of hard labels. The distillation process reduces the gradients870

used to create the adversarial example. As a result, this defensive mechanism

of a DNN can reduce the effectiveness of adversarial sample from 95% to less

than 0.5%. Detailed analysis of the state-of-the-art defensive measures can be

found in recent surveys on robust deep learning [31, 32, 33].

(7) Inadequate practice of demonstrating assurance cases for ML-875

based system:

Despite ML showing promising improvements in performance due to its in-

troduction in many complex systems, it will always lack confidence of the users

and society unless a proper assurance case is provided. However, unfortunately,

there is currently no formal practice of producing end-to-end safety assurance880

cases. Palin et al. [154] proposed patterns for designing safety cases covering

all aspects of ISO 26262 for the automotive domain. However, these proposed

reusable safety arguments did not consider the complexities that ML techniques

bring. A fault-free system can still behave in an unintended way due to the

intrinsic uncertainty of ML techniques. Therefore Gauerhof et al. proposed a885

safety assurance case for a pedestrian detection function using Graphical Struc-

turing Notation (GSN) [155]. In this approach, the risks of under-specification
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(unclear tasks and environments), deductive gap (incorrect learning of features

from insufficient data), and semantic gap (unclear domain concepts) have been

reduced by defining corresponding arguments and evidences. This type of well-890

structured validation targets helps gain confidence. Matsuno et al. [156] ex-

plained how the inherent uncertainty of ML models affects the strategy and

activities for safety assurance. According to these researchers, continuous argu-

ment engineering is useful in such cases to determine the weakness of a model,

which can never be pre-calculated. They also developed tool support to assess895

and track the latest state of assurance. A similar idea was previously proposed

by Denney et al. [157] and it was applied to the aviation system domain. The

authors showed how safety management system needs to manage the safety cases

not only during the development and deployment period but also at run-time

based on real-time operational data. However, this approach did not explicitly900

handle the risks and uncertainty of ML models. Recently, patterns for arguments

safety assurance of ML in the medical diagnosis system have been proposed as

well [158, 159]. In these approaches, the researchers provided a detailed struc-

ture of assurance cases using GSN while considering medical settings and ML

activities. These patterns can be widely used in other safety-critical domains,905

given sufficient settings or context-specific information about the domain.

Discussion. Despite putting rigorous efforts on V & V of ML-based systems, as

argued by Brundage et al., not having a formal consensus on metric to measure

general property like safety of these systems, there will be always a tension

between the verifiability claims and the generality of such claims [160].910

6. Discussion of research questions

In this section, we revisit our research questions to finally map the primary

studies to answer the research questions from an engineering process perspec-

tive. Although in the previous section, we discussed the challenges and research

efforts along each layer, we are going to summarize our findings from the litera-915

ture review in this section. For the ease of understanding and to have a better
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traceability, we first make a list of the primary studies and assign a unique ID

to each of them as shown in Table 6. In this table, we also summarize the per-

spective, domain, objective and specific ML techniques that each of the studies

focuses on. In case of a paper written for (or tested on) a specific domain, we920

specify the name of the domain. Otherwise, we mention it as “General”. Simi-

larly, we mention NS (non-specific), if the study is not exclusively designed for

any particular ML technique. DNN, RL, NN stand for Deep Neural Networks,

Reinforcement Learning, and Neural Networks respectively.

6.1. RQ1: How can we easily comprehend the complexity and challenges involved925

in fostering safety of complex intelligent systems?

To visualize the complexity and challenges faced by multiple stakeholders

involved in the process of engineering safe AI systems, we analyzed the primary

studies based on the proposed three-layered framework depicted in Fig. 3. In Ta-

ble 7, we map the primary studies to each layer of the three-layered framework.930

Compared to the other two layers, the Problem Definition Layer has received

less attention. As this layer involves activities like analyzing the problem to be

solved, understanding the domain, setting the right targets, it is imperative to

focus more on this layer to avoid late realization of setting incorrect targets and

objectives. As the table shows, many researchers are focusing on the validation935

and verification-related challenges in the third layer. While we acknowledge the

absolute necessity of formal verification of ML-based systems to gain trust, we

also believe having a clear idea about “what to verify”, “against which met-

rics to verify”, “what are the qualitative and quantitative targets” is equally

important to verify and validate a system in the right way. In layer-2, more940

work needs to be done on modeling uncertain environment from a software en-

gineering perspective. Most of the standards included in the review need to be

updated to accommodate the new challenges that are brought in by the advent

of ML algorithms.

In a nutshell, with the help of the three-layered framework, we can easily945

observe that a lot of areas are still open for research to strengthen a strong
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foundation (layer-1 and 2) of the overall system engineering of complex ML-

based systems.

6.2. RQ2: How have safety concerns been addressed by the researchers along

the phases of SE process?950

Summary of the state-of-the-art safety approaches at the system-level and

ML-based component level along the phases of software engineering life-cycle is

shown in Table 8 and Fig. 4. We did not map [22, 45, 46, 80, 161, 162] as these

papers do not exclusively focus on any of the particular SE activities. Instead,

these studies focus on an overall engineering process of developing ML-based955

systems. The reason why no primary study could be directly mapped to the

development phase for ML-based components is that in case of ML, the line

between the design and development is very thin. The key concept here is to

take safe design decisions while training the ML model. For example, safe explo-

ration, safe policies, safety-aware rewards, etc. All these approaches are mapped960

to the design phase of ML-based component, rather than its development phase.

All the safety-related standards are mapped to system-level development as the

standards usually provide guidelines to the overall development process of the

safety-critical systems. As shown in Fig. 5, there has been a recent surge in the

research on verification and validation of safety-critical systems with ML-based965

components since 2016. However, more effort needs to be paid to conceptualize

and analyze the rich problem space of AI systems in the early phases such as

requirements engineering and design. It is very important to have a systematic

start of the engineering process as it often plays a key role in successful product

development. Moreover, not enough attention is paid to the seamless mainte-970

nance and evolution of complex AI systems as it can be seen in both Fig. 4

and 5.

6.3. RQ3: Research Gap Analysis

The most significant concern is that two different communities or engineering

disciplines are responsible for ensuring safety of intelligent systems. Safety as975
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Figure 4: Number of primary studies along the phases of SE activities at system-level and

ML component level

Figure 5: Trend of research on safety approaches from an engineering perspective in the last

15 years
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argued by many researchers is an emergent property of a system. The source of

hazard at a system level could be control flaws, inadequate control action, and

inadequate control execution, etc. Artifacts and metrics for the safety analysis at

the system level, such as safety goal model, safety argument, and safety integrity

level, etc. have already been identified. However, when intelligence is introduced980

in the system through an ML component mainly designed by AI experts, the

identified source of hazards are different in terms of complexity and level of

abstraction. An ML component can perform incorrectly because of the wrong

choice of training data (supervised learning) or wrong choice of policy, unsafe

exploration, delayed rewards, etc. (unsupervised learning). There is no common985

baseline of the metrics and artifacts to ensure or explain the safety constraint

from an ML point of view. In the same direction, Varshney discussed a much-

needed future technical agenda on defining how trust, reliability, robustness,

etc. are traced to safety [162]. There is a significant gap between the two levels

of safety analysis at the system level and the component level whenever any990

intelligence is introduced by using ML component (Fig. 6). The open research

questions are:

(1) How to bridge the safety analysis gap from a safety viewpoint?

(2) How to enhance traceability of these artifacts from the system level down

to the component level?995

(3) What is the formal taxonomy for safety analysis in the case of ML com-

ponents?

(4) Is there any standard specially designed to assess the level of safety and

the acceptable range of uncertainty of ML-based components in complex AI

systems?1000

The gap between research and practice: Koopman explained that there is a

significant contrast between the safety principles in research and practice in au-

tomotive industry [163]. He argued that although ISO 26262 looks promising as

a standard for the level of safety of automotive systems, uncertainty in the oper-

ating environment still poses some threat to complete deployment. Salay made1005

a notable contribution to update ISO 26262 to accommodate technologies such
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System Level Design

Machine learning 

Component Level design

Source of hazard Approaches/ artifacts

 Control flaw

 Inadequate control action

 Inadequate control 

execution
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 Safety argument
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 Safety constraint
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Assurance Level (SEAL)

Supervised Learning

 Incorrect training data
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 Poor controllability

Unsupervised Learning 

 Unsafe exploration

 Delayed reward

 Inadequate policy etc.

Mainly performed by

System Engineer

Mainly performed 

by ML experts
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 How to bridge the gap from 

safety viewpoint?

 How to enhance traceability of 

these artifacts from system level 

down to the component level 

and vice versa?

 What is the formal taxonomy 

for safety analysis in case of 

ML component?

Figure 6: Gap analysis of the state-of-the art safety approaches of complex intelligent systems

as ML [80]. Lawakate et al. conducted an empirical investigation to deduce

a taxonomy of SE challenges for several domains that use ML-based compo-

nents heavily [161]. The authors emphasized that the challenges of a seamless

engineering process that includes the development and evolution of ML-based1010

components are very significant.

6.4. RQ4: Future Scope:

6.4.1. Addressing multi-disciplinary challenge: Collective Intelligence

The recent accidents on the autonomous systems were mostly linked to in-

sufficient training (inadequate dataset) or choosing the wrong level of automa-1015

tion. The root cause was insufficient coordination between ML experts and

safety engineers at an early phase of systems engineering. Requirement specifi-

cation should describe data requirements, values consensus (from multiple par-

ticipants), the reaction of a system to a fault, etc. This is a multidisciplinary

challenge where collective intelligence can be a great asset. To ensure safety,1020

many different domain areas need to be coordinated as shown in the framework.

Data scientists, HCI experts, safety engineers, software engineers, etc. all need

to collaborate to ensure safety. Instead of relying on the knowledge of individu-

als, we should use the collection as an emergent intelligence to solve engineering
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problems. We can rely on all to work together, collaborate, and share individ-1025

ual knowledge to achieve a goal. In a nutshell, we can have a paradigm shift

from traditional safety engineering to a broader concept of collective knowledge

engineering.

6.4.2. Enhanced traceability of the artifacts across the layers of the integrated

framework1030

Due to the lack of an integrated framework, it is unclear how we can trace

safety-driven design of AI systems. Most of the research work focusing on safety-

driven ML do not specify clearly how their design/ learning decisions relate to

the system level safety-related concepts. Traditional understanding of forward

and backward traceability has less impact in the days of AI. Therefore, we define1035

horizontal and vertical traceability of safety-driven design of AI systems.

Horizontal Traceability: traces of safety engineering process and design de-

cisions along the same layer at system-level and ML-based component-level in-

volving multiple participants.

Vertical Traceability: traces of safety analysis across the layers.1040

Instead of relying on the tacit knowledge of the experts, we recommend keep-

ing a record of all design decisions and the rationales behind them. Therefore,

we need to specify ML related categories of risks, the way those risks are adding

on to the system-level risks. Thereafter, the experts can mitigate each risk with

safety constraints and record them in the artifacts.1045

7. Threats to validity

In this section we discuss the known threats to the validity of our literature

survey. We also explain how we mitigated the threats. Moreover, we summarize

the limitation of our study. As discussed in [164], identified threats to four types

of validity (internal, external, construct and conclusion) can be mapped to the1050

following phases of the literature survey.

1. Planning phase:
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In this phase, we set the valid research questions which were evaluated later

by the graduate researchers working on AI systems engineering. We documented

the rationale behind each of the research questions. We followed a stepwise1055

process for the search method with explicit actions and outcomes. The complete

list of venues or databases and search strings are mentioned in Section 4.3 and

4.2, so that the SLR can be replicated in future. The finalized list of primary

studies after applying the inclusion and exclusion criteria are rechecked at least

twice before moving to the next phase.1060

2. Conducting phase:

In order to mitigate the threat of incomplete research information or inac-

cessible full version of papers, we have contacted the relevant authors whenever

needed. We mitigated the publication bias by excluding the grey literature from

the study. During this phase, each of the paper has been cross-checked for their1065

completeness. Along with the title and abstract, the introduction of each paper

was carefully read to confirm that the perspective the work is not misunder-

stood. The quality of the papers is evaluated quantitatively to mitigate the

threat of subjective quality assessment. Threat of duplication was mitigated by

carefully choosing the full paper version (if available) over a smaller and earlier1070

version of the same work.

3. Reporting phase:

In this phase, we report our analysis based on the research questions after

analyzing 112 primary studies. These many studies are good enough to mit-

igate the threat of low generalizability of primary studies. We have covered1075

safety-related papers written from various perspectives (software engineer, ML

experts, safety engineer, etc) and applied to a diverse domain, to increase the

generalizability of our final report.

Limitations:

Our study is primarily based on the proposed three-layered conceptual frame-1080

work to engineer AI systems. This framework is designed based on our knowl-

edge on the relevant area of research. It helps us to analyze the state-of-the-art

safety approaches from the perspective of multiple stakeholders along each phase
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of the system engineering.However, an end-to-end evaluation of the effectiveness

of the proposed framework is out of the scope of this paper. The survey cov-1085

ers primary studies mainly from the software engineering process perspective.

However, there are other relevant studies on AI safety can be found from the

discipline of statistics, human-computer interaction, etc. Those studies are not

discussed in this literature review.

8. Conclusion1090

The use of ML techniques to impart intelligence creates many challenges

to ensuring safety. In this paper, we summarized the current state-of-the-art

research contributions in this area. We explained a three-layered conceptual

framework that can help visualize the stakeholders and their contributions to

engineering a complex intelligent system from a safety perspective. We analyzed1095

the gap in the current research that should be addressed. We also described how

this three-layered framework can help enhance the traceability of safety-driven

design across all the layers in the future. We believe that it is worth exploring

how the artifacts move across the layers in different forms to facilitate the safety

analysis. Instead of relying on tacit design knowledge (or tacit machine learning1100

knowledge of AI experts), it is helpful to document all the rationales behind each

decision to eventually gain the trust of the stakeholders. For future work, we

plan to design a proper stepwise methodology to guide multiple disciplines to

work together for safety analysis and verification of AI systems.
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