
Software Engineering for Secure Systems
Danilo Bruschi*, Bart De Win**, Mattia Monga*

*Università degli Studi di Milano, Milan, Italy
**Katholieke Universiteit Leuven, Leuven, Belgium

bruschi@dico.unimi.it,bart.dewin@cs.kuleuven.ac.be, monga@ðico.unimi.it

A workshop summary
The SESS'05 held in St. Louis, MO on May 15-16 was intended to
be a venue to discuss techniques for building and validating secure
applications. Workshop attendees (about 40 people) came both
from the software engineering and the security community, raising
a fruitful discussion and exchange of ideas and problem
perspectives.

Speaker presentations were organized in three sessions.

The first session addressed security at the architectural level of
applications. Demir et~al. [1] proposed an aspect oriented
architectural description language to handle security features in
distributed systems. Rits et~al. [2] described their approach for
inspecting (in an aspect oriented fashion) access control policies in
multi-layer applications. Banerjee et~al.[3] related trustworthiness
of complex applications to their architectural parts: components,
connectors, and configurations. Ren et~al.[4] suggested that
connectors can be used to enforce many security policies at design
time. De~Win et~al.[5] discussed design by contract when applied
to security concerns. Verhanneman et~al.[6] focused on
requirement traceability in the context of access control for
distributed systems.

The second session tackled the problem of evaluating trust, risk,
and security properties from high level descriptions of a system.
Lee et~al.[7] presented a structured and systematic approach to
certification and accreditation in the context of Department of
Defense's projects. Dwaikat and Parisi-Presicce[8] proposed a
quantitative risk assessment based on architectural information.
Mead and Stehney[9] described a methodology for elicitation and
risk assessment of security requirements. Sohr et~al.[10] showed
the advantages of using OCL for expressing authorization policies
at design level.

In the third session a number of software engineering techniques
that may improve the security of applications were presented.
Breech and Pollock [11] described a framework for testing
language-based protection mechanisms. Weber et~al.[12]
classified software flaws according to the nature of the defect in
the source code. Masri and Podgurski[13] detailed the use of
dynamic flow analysis for checking security policies. Jochen
et~al.[14] discussed the challenge of trusting polymorphic
components. Gegick and Williams[15] proposed a pattern
language for describing vulnerabilities.

Lesson learned
A significant part of the discussions focussed on the differences (if
any) between secure software engineering and plain secure
engineering. Quite obviously secure software engineering implies
secure engineering and software engineers should learn to use the
language and the conceptual tools of security and safety

specialists. However the software part of complex systems is often
the hardest to secure, due to its intrinsic complexity. Software
engineers should exploit their understanding of software to
manage this complexity taking into account security and safety
concerns. Security requirements should be elicited correctly,
traced, implemented and validated, as usual. However, they
inherently cross-cut different abstraction levels and they are
exceptionally difficult to validate because they are often expressed
as negative properties. As a result, new approaches to testing
security mechanisms are needed. Moreover, security issues
encompass components, connectors, and configurations, thus
security contracts among services should account for them all.
Enforcing security contracts and policies requires (or at least is
greatly simplified by) run-time monitoring, that should be part of
most of secure applications. In any case, using a software system
implies a risk, but it has also a value; however, both of them are
extremely difficult to quantify and compare, since they are
domain- and stakeholder-sensitive. Finally, raising the return on
investment of the security effort is crucial for many environments
to adopt and install secure software engineering methods.

References

[1] O. E. Demir, P. Devanbu, N. Medvidovic, and E. Wohlstadter,
"DISCOA: architectural adaptions for security and QoS,

[2] M. Rits, B. D. Boe, and A. Schaad, "XacT: a bridge between
resource management and access control in multilayered
applications"

[3] S. Banerjee, C. A. Mattmann, N. Medvidovic, and L.
Golubchik, "Leveraging architectural models to inject trust into
software systems"

[4] J. Ren, R. Taylor, P. Dourish, and D. Redmiles, "Towards an
architectural treatment of software security: A connector-centric
approach"

[5] B. D. Win, F. Piessens, J. Smans, and W. Joosen, "Towards a
unifying view on security contracts"

[6] T. Verhanneman, F. Piessens, B. D. Win, and W. Joosen,
"Requirements traceability to support evolution of access control"

[7] S.-W. Lee, R. Gandhi, and G.-J. Ahn, "Establishing
trustworthiness in services of the critical infrastructure through
certication and accreditation"

[8] Z. Dwaikat and F. Parisi-Presicce, "Risky trust: Risk-based
analysis of software systems"

[9] N. R. Mead and T. Stehney, "Security quality requirements
engineering (SQUARE) methodology"

[10] K. Sohr, L. Migge, and G.-J. Ahn, "Articulating and enforcing
authorisation policies with UML and OCL"

ACM SIGSOFT Software Engineering Notes Page 1 July 2005 Volume 30 Number 4

[11] B. Breech and L. Pollock, "A framework for testing security
mechanisms for program-based attacks"

[12] S. Weber, P. Karger, and A. Paradkar, "A software flaw
taxonomy: Aiming tools at security"

[13] W. Masri and A. Podgurski, ¡ÈUsing dynamic information
flow analysis to detect attacks against applications"

[14] M. Jochen, A. A. Anteneh, L. Pollock, and L. Marvel,
"Enabling control over adaptive program transformation for
dynamically evolving mobile software validation"

[15] M. Gegick and L. Williams, "Matching attack patterns to
security vulnerabilities in software-intensive system designs"

ACM SIGSOFT Software Engineering Notes Page 2 July 2005 Volume 30 Number 4

