
Incorporating Multimedia Source Materials into a Traceability Framework

Heather Richter, Robin Gandhi, Lei Liu and Seok-Won Lee
Department of Software and Information Systems

University of North Carolina at Charlotte
{richter, rgandhi, lliu10, seoklee}@uncc.edu

Abstract

Requirements engineers generate domain models
and requirements specifications from a variety of rich,
informal sources. Yet much of this informal
information is not preserved to maintain the
traceability of requirements back to their origins. In
this paper we describe TRECRE, a traceability
framework for preserving and providing access to a
variety of multimedia source materials.

1. Introduction

Software development is a complicated,
information-rich process: requirements engineers seek
domain and system information and transform that
knowledge into requirements models and specifications
to use throughout development. The process of
creating these artifacts is naturally a lossy one as rich
and informal information is abstracted and formalized.
This is in most cases beneficial, as only a relevant and
structured understanding remains to be moved further
through development. However, as requirements
evolve and change, or as problems are discovered, the
formal specifications may no longer be sufficient to
understand the impact and necessary changes.
Additional details about the underlying knowledge and
decisions that led to the specification may be useful to
facilitate requirements evolution and further
development.

Traceability is the ability to follow the evolution of
an object – a piece of knowledge, a requirement, a
design idea – from its inception throughout software
development [3]. We are particularly concerned with
pre-traceability of requirements: tracing a requirements
object back to the original knowledge used in its
creation. Requirements knowledge may have many
sources such as customer discussions, expert
interviews, sketches and diagrams, and documents and
other specifications. All of this original, often informal,
requirements knowledge is difficult to formally

document and maintain due to its volume and
complexity.

Our aim is to support requirements knowledge
traceability by automatically capturing and maintaining
source materials in as close to original form as
possible. This means recording the discussions, and
saving the sketches, images and other artifacts. We will
then provide means for efficiently searching and
browsing all of these materials, and as automatically as
possible, link media to related domain models and
requirements specifications. Thus, we are proposing a
multimedia traceability framework to address the
capture and review of requirements source materials,
aiming to complement, not modify, existing
requirements methods and artifacts.

In this position paper, we present our conceptual
traceability framework — TRaceability-preserving
Evidence Capture for REquirements domain modeling
(TRECRE) — for maintaining the rich, informal
information contained within a variety of multimedia
source materials. We first present our motivating
experiences in recording informal discussions and the
potential use of those discussions in software
development. These experiences motivated the
formation of a more general framework to address the
issues of maintaining and navigating a number of
informal information sources. We present our initial
framework and our plans for implementing this
framework as part of an existing requirements domain
modeling toolset. Finally, we conclude with the
challenges and issues we expect to address in
implementing and evaluating this framework.

2. Meeting Capture Background

A common theme in ubiquitous computing and
multimedia research is the automated capture of
everyday activities for later access and use. A number
of prototypes have been built and deployed in both the
classroom and meeting room. Many systems attempt to
augment slides, notes, or whiteboard activity with

In Proceedings of the First Int'l Workshop on Multimedia Requirements Engineering - Beyond Mere Descriptions, (MeRE'06),
14th International Requirements Engineering Conference (RE'06),

September 11-15, 2006 Minneapolis/St. Paul, Minnesota, USA.

1

audio and/or video. For example, the TeamSpace
system records interactions with presentations, agendas
and action items and integrates them with the meeting
audio and video [11]. Meeting participants can then use
the slides, meeting notes, or agenda items to replay
portions of the meeting. A number of similar systems
have investigated various methods for recording and
indexing such meeting content.

While recording generic meetings may be
beneficial, we have also been investigating more
specific discussions in software development, where
recording has long term implications for addressing
important problems such as rationale and traceability.
In previous work, we have implemented two interface
prototypes to evaluate the use of captured discussions
in software development tasks.

We first investigated the capture of Software
Architectural Analysis Method (SAAM) sessions [10],
a method for analyzing the effects of proposed changes
on the software architecture. As part of that effort, we
video taped a real set of SAAM discussions and
manually created an interface to review that video.
Users navigated the video by the locations of keywords
— the architectural elements — that were contained
and linked in a text document summarizing the session.
In an evaluation, we observed users answering
questions about the software architecture and the
SAAM analysis, using both the document and video.
Users stated that the video was beneficial not only in
providing additional details that were left out of the
document, but also in providing information at
different levels of abstraction, and in adding additional
authority to the statements in the document. In other
words, the video recording of a discussion contained
useful information even when a formal document
summarizing that discussion existed.

We then investigated the recording of knowledge
acquisition sessions in the TAGGER project [9]. We
video taped a knowledge acquisition session, produced
an automated transcript and annotated that transcript
with keywords. We observed how people used the
video and transcript to create a requirements document
based on the knowledge acquisition session that they
watched previously. Users looked up specific details in
the video they may otherwise have left out of their
documents. They clarified important points and had
fewer inaccuracies as a result. And, they used the video
to look for issues they had forgotten about or not taken
notes on. An important result of our evaluation was
that the video was only utilized when users had helpful
navigation mechanisms, such as the annotated
transcript, to make finding specific conversation points
relatively easy. Thus, merely recording such
conversations is not sufficient. Users need indices,

summaries, or other navigation mechanisms in order to
find and utilize information within the recordings.

Our experiences in meeting capture and access
show that recording informal information such as
conversations can be beneficial both in creating new
artifacts and in reviewing existing ones. Our prototypes
demonstrated that recording and indexing such
conversations is feasible, at least on a smaller scale.
Automated technologies provide many ways to record
conversations and artifacts with little or even any
additional burden on software developers. However,
any single discussion is only going to have limited use.
Thus, to further study the impact of recording meetings
and other informal information we need to more fully
incorporate those materials into the overall software
design process.

3. Traceability background

Based on interviews with requirements engineers,
Gotel and Finkelstein concluded that many problems in
requirements traceability were with inadequate pre-
traceability – an inability to record and trace
information related to requirements production and
revision [3]. Furthermore, Gotel and Finkelstein
discovered that for many, the crux of the problem was
the inability to locate and access the source of a
requirement.

A number of tools and techniques address issues of
requirements and design post-traceability – tracing
requirements elements as they are evolved and used
(e.g. DOORS [14], RDD-100 [4].) One common
solution is to allow any object within a modeling
environment to be related to another, such as relating a
design object to the requirements it addresses. Other
tools allow explanations or descriptions of rationale to
be attached to objects to help explain their creation [8].
These techniques certainly provide valuable
traceability, and allow software engineers to follow the
relationships between elements of supported models.
Each of these techniques, however, requires that the
desired piece of information already exists within the
modeling or specification environment.

We are concerned with more informal information,
such as a conversation or sketch, that is not currently
represented within existing toolkits or environments.
Our experiences in meeting capture suggest that this
information could be beneficial throughout
requirements and development. However, representing
such information in yet another formal model or
specification is an added burden and likely insufficient.
Instead, our approach relies on recording and
maintaining the original materials in as close to
original form as possible, and only requiring sufficient

2

additional structures to help index the content and to
link portions of that content to related formal elements
within existing environments. These structures will
then aid software engineers in reasonably navigating
and finding information within those source materials.
The following scenario further illustrates our goals:

Phil is working on the requirements specification of a
system to electronically display checklists for pilots in
the cockpit. The domain object model contains two
subtypes of checklist and Phil is unsure if those types
need to be displayed differently. He uses the model to
query the collection of source materials for additional
information on the two types of checklists. Phil reads a
document from an airline and replays portions of an
interview with a pilot to better understand the subtle
differences between these two checklists. As he creates
a new requirement, he links it to the domain object
model elements. Based on his recent activity, the
interview and document he just viewed are also
automatically linked to that requirement.

4. The TRECRE Framework

We are developing a framework, called TRECRE,
for supporting traceability by preserving informal
knowledge within software requirements. The
framework is outlined in Figure 1. Our framework is
based upon two intermingled activities of software
requirements. Requirements engineering is an ongoing,
informal process where people talk to customers, users
and other experts, read documentation on the domain
and on development, sketch and brainstorm ideas, and
work and make decisions together to make progress.
This process is represented on the bottom of our
framework in Figure 1, where we plan to record and
preserve much of this source material.

Requirements engineers also create formal models
and specifications of the domain and requirements
within a modeling or development environment. As
work progresses, those models evolve and new ones
are created and linked to existing elements. This is the
top layer of our framework in Figure 1. Traceability
has mostly been supported within this layer, the more
formal aspects of this process.

Informal activities can already be easily preserved
if desired. Discussions can be video or audio taped.
Informal documents can be saved. Yet, this is not
currently common practice because it does not actually
maintain traceability. We need structures that bridge
the gap between the informal “universe of discourse”
and the modeling and specification domain. The
middle layers of Figure 1 represent this bridge, where
formal elements are automatically linked in a variety of

ways to related source materials, and vice versa, to
maintain traceability. Software engineers thus navigate
up and down the layers to find and review the
information they desire. Our goal is to explore a
variety of techniques that can create these links
automatically, based on both processing the media and
on tracking the use of the media. Thus, we are not
changing the current methods or process of modeling
and specifying requirements, but instead attempting to
preserve that process and provide access to that record
when needed.

4.1. Indexing Source Materials

In our framework, source materials can be a variety
of formats, from multimedia recordings of meetings, to
text documents and web pages. Reviewing a meeting
will require very different capabilities than reading a
document. However, the same structural notions can
apply to all of these media. First, any particular file
may have metadata associated with it. This data
describes properties of the media item, such as time,
date, description and others. For example, a meeting
will likely have a date, start time and end time, list of
participants, and a description. This kind of metadata is
what many multimedia information retrieval systems
use to search for files or objects in a multimedia
database. This metadata is important information, yet
accessing an entire discussion or document is often not
the appropriate scope. A particular topic may only be
discussed for 10 minutes during a meeting, or relate to
one page of a document. Thus, we need ways to
represent, structure, and link to smaller and more
specific segments of the source materials.

The most basic building block of such a structure is
an Index. An index is simply a meaningful location in a

Domain models &
Requirements
specifications

Multimedia source
materials

Indices and Metadata

Semi-structured
index descriptions

Fo
rm

al
ity

Figure 1. The conceptual TRECRE framework.

3

media source. In audio or video recordings, the
location is represented as a point in time in the
recording. In documents, an index could be described
in different granularities – perhaps a page, or section,
or line of text. In both cases, the index also contains a
meaningful descriptor that indicates what is located
there. In our previous work with meeting recording
prototypes, we explored a variety of indices such as
agenda items, slides, architectural elements, and
domain keywords. Thus, our framework will
generically support the notion of sets of indices, and
we will explore a variety of specific indices for various
media. Additionally, indices may be related to each
other and we will provide mechanisms to group and
model sets of related indices to facilitate linking these
structures to formal requirements and domain
elements.

4.2. Semi-Structured Indices

The bridging middle layers of Figure 1 are critical
to the usefulness of this framework. Given the range
and complexity of the source materials in the informal
world, and the diverse RE modeling methods in the
more formal world, there will not be one deep structure
providing this bridge. Instead, we will need to support
a variety of broad, flexible, and shallow structures that
can describe the source materials in ways that relate to
the generic notions of goals [15], viewpoints [12], and
scenarios [13] most often used for requirements and
domain modeling. Such semi-structured sets of indices
will help users navigate between the formal and
informal worlds to gather, browse, and search for
knowledge artifacts related to requirements.

4.3. Requirements Domain Models

To realize TRECRE, we are building upon the

Onto-ActRE [6] requirements domain modeling
framework. The Ontology-based Active Requirements
Engineering (Onto-ActRE) [6] framework, through its
theoretical foundations as a mixed-initiative approach,
offers flexibility to gather and represent knowledge
artifacts based on multiple RE methods and the
synergy among them. The framework combines the
strengths of multiple complementary RE modeling
techniques in a unifying ontological knowledge
engineering process. A uniform ontological frame
representation promotes traceability among knowledge
artifacts from multiple modeling philosophies with
well-defined semantics for their structure and
interoperability. More specifically, the Onto-ActRE
framework includes models and methods for 1) Goal-
driven scenario composition; 2) Requirements domain

model; 3) Viewpoints hierarchy, and 4) Other domain
specific taxonomies to hierarchically organize the
application domain concepts, properties and their
relationships.

To support the representation of rich knowledge
structures, various ontological engineering processes
are provided by the GENeric Object Model (GenOM)
[7] toolkit. GenOM is an integrated development
environment for ontological engineering processes
with functionalities to create, browse, access, query,
and visualize associated knowledge-bases. The
conceptual architecture of GenOM is shown in Figure
2.

Application 2 Critical Infrastructure
Protection (CIP)

Property
Model

Object
Model

Feature
Model

Instance
Model

Viewpoints
Model

Inference
Model

Knowledge Structure

Hierarchical Object Model

GenOM Rule Base

GenOM Knowledge Base

Data/
Information Knowledge

Application
Layer

API
Layer

Foundation
Layer Visualization

Model

Collaboration
Model

Knowledge Representation Mediation / Mapping / Merging

Application 1 Application N

Figure 2: GenOM Conceptual Architecture

The GenOM meta-language consists of Objects,
Properties, and Features with semantics that
effectively support knowledge acquisition and
representation. GenOM Objects with support for single
or multiple inheritances are used to model hierarchical
structures that describe the concepts in a domain.
GenOM Properties are used to describe the
characteristics or attributes of Objects and Features.
Finally, GenOM Features are used to describe the
relationship or dependencies that exist between
Objects. Once the Objects, Properties, and Features
are defined, they are instantiated to represent specific
Instances that exist in a problem domain. GenOM is
associated with an inference engine [1], which supports
reasoning based on the Objects, Properties, and
Features and Instances defined in its knowledge-bases.

The Onto-ActRE framework and GenOM together
have been applied to build domain models from
regulatory requirements documents for the Department
of Defense Information Technology Security
Certification and Accreditation (C&A) Process
(DITSCAP) [2] automation with promising results in
the initial stages [5].

In TRECRE, the sets of indices will also be
represented within GenOM to facilitate linking

4

between the source material descriptions and the
various domain models of Onto-ActRE, providing
uniform representation of knowledge throughout the
framework. Additionally, the use of GenOM provides a
powerful mechanism to explore modeling and
reasoning about the structure and relationships of
indices themselves, and their relationship to domain
model elements. This will enable us to create scalable
navigation paths between a large number of potentially
related elements and media.

5. Conclusion

In this position paper, we outlined our conceptual
framework for preserving and providing meaningful
access to informal requirements source materials. We
are beginning to implement and evaluate aspects of this
framework. Implementing the TRECRE framework
involves a wide variety of technologies for recording,
preserving, linking, and reviewing the multimedia
source materials. For each of these stages we will need
to investigate which technologies or methods best
achieve our goals. We will investigate various
technologies for recording and identifying sets of
indices, such as using natural language analysis to
determine conversation topics. We will examine the
use of ontologies for discovering and analyzing the
relationships between the media and model elements.
We will expand upon our experience in building
applications to review recorded meetings to create
interfaces for navigating a large set of materials.

Finally, our goal in all of this work is to explore on
a larger scale the usefulness of preserving informal
source materials in software development. What
materials are most important to maintain? How can
users navigate a large corpus of source materials and
easily find relevant information? And most important,
what is the benefit of preserving all of these media on
requirements creation and use?

6. References

[1] Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D.,
Seaborne, A., Wilkinson, K., “Jena: implementing the
semantic web recommendations,” In Proc. of the 13th Int’l
World Wide Web Conf., USA, pp: 74-83, 2004.
[2] DoD Instruction 5200.40, “DITSCAP,” 1997.
[3] Gotel, O. and A.C. Finkelstein, “An Analysis of the
Requirements Traceability Problem,” in the Proceedings of

the Conference on Requirements Engineering, April 1994, pp
94-101.
[4] Holagant Corporation, The RDD-100 Product Family.
http://www.holagent.com/products/product1.html.
[5] Lee, S. W., Gandhi, R. A., and Ahn, G., “Certification
Process Artifacts Defined as Measurable Units for Software
Assurance,” To Appear in the International Journal on
Software Process: Improvement and Practice, Wiley, July,
2006.
[6] Lee, S.W. and Gandhi, R. A., “Ontology-based Active
Requirements Engineering Framework”, Proceedings of the
12th Asia-Pacific Software Engineering Conference (APSEC
’05), Taipei, Taiwan, Dec. 15 - 17, 2005, pp. 481 – 490.
[7] Lee, S.W. and Yavagal, D., “GenOM User’s Guide,”
Technical Report TR-SIS-NISE-04-01, Knowledge Intensive
Software engineering Research Group, Dept. of Software and
Information Systems, UNC Charlotte, 2004.
[8] Ramesh, B. “Supporting Systems Development by
Capturing Deliberations During Requirements Engineering,”
IEEE Transactions on Software Engineering, 18(6), June
1992, 498-510.
[9] Richter, H., C. Miller, G.D. Abowd, and I. Hsi. "An
Empirical Investigation of Capture and Access for Software
Requirements Activities," in the Proceedings of Graphics
Interface, 2005, pp 121-128.
[10] Richter, H., P.l Schuchhard, and G.D. Abowd.
"Automated capture and retrieval of architectural rationale,"
Position paper, First IFIP Working Conference on Software
Architecture, San Antonio, TX, February 1999.
[11] Richter, H., W. Geyer, L. Fuchs, S. Daijavad, and S.
Poltrock. "Integrating Meeting Capture Within a
Collaborative Team Environment," In the Proceedings of the
International Conference on Ubiquitous Computing, Atlanta,
GA, September 2001, pp123-138.
[12] Sommerville, I. and Sawyer, P., “Viewpoints:
Principles, Problems and a Practical Approach to
Requirements Engineering,” Annals of Software
Engineering, Vol. 3, 1997, pp. 101-130.
[13] Sutcliffe, A., “Scenario-based requirements
engineering,” In Proceedings of the 11th Requirements
Engineering Conference, IEEE International, 8-12 Sept.
2003, pp. 320- 329.
[14] Telelogic DOORS Requirements Managements
Traceability solutions.
http://www.telelogic.com/corp/products/doors/index.cfm.
[15] van Lamsweerde, A., “Goal-Oriented Requirements
Engineering: A Roundtrip from Research to Practice”, In
Proceedings of 12th IEEE Joint International Requirements
Engineering Conference, Kyoto, 2004, pp. 4-8.

5

