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ABSTRACT

This paper presents a methodology for data mining and
knowledge discovery in large, distributed and heterogeneous
databases. In order to obtain potentially interesting patterns,
relationships, and rules from such large and heterogeneous data
collections, it is essential that a methodology be developed to
take advantage of the suite of existing methods and tools
available for data mining and knowledge discovery in databases
(KDD). One of the most important methodologies is an
integration of diverse learning strategies that cooperatively
performs a variety of discovery techniques that achieves high
quality knowledge. KDLC is an extended study of AqBC [8]
which is a multistrategy knowledge discovery approach that
combines supervised inductive rule learning and unsupervised
Bayesian classification via constructive induction mechanism.
A case study dealing with “crop yields” for a farm in the state
of Idaho is presented and preliminary results are visualized by
using ArcView GIS system. The significance of the
multistrategy knowledge discovery process and visualization
process in analyzing the classifications and learned rules has
been empirically verified in KDLC.

1. INTRODUCTION

This paper presents a methodology for data mining and
knowledge discovery in large, distributed and heterogeneous
databases. The data collections may consist of maps, imagery,
and sensor data, and in situ measurements that must be
integrated to present a composite “picture” of the information
to be analyzed. In order to obtain potentially interesting
patterns, relationships, and rules from such large and
heterogeneous data collections, it is essential that a
methodology be developed to take advantage of the suite of
existing methods and tools available for data mining and
knowledge discovery in databases (KDD) [2].
We develop a methodology and an associated Knowledge
Discovery Life Cycle model, called the KDLC. The KDLC
consists of well-defined activities that guide and assist the user
throughout the KDD process. The learning processes of the
KDLC are a combination of unsupervised and supervised
learning. A key contribution of this approach is the integration
of these two types of learning into a multistrategy KDD
approach, combining unsupervised Bayesian classification with
supervised inductive learning. The particular approach begins
by analyzing large data sets using an unsupervised Bayesian
classification system, AutoClass. AutoClass discovers
interesting taxonomic classes from databases, and these can be
represented as new attributes in an expanded representation
space via Constructive Induction mechanism. The robust

inductive learning system, AQ15c, can then be used to “learn”
useful concepts, relationships, and rules that characterize
knowledge in the data space.
A case study dealing with “crop yields” for a farm in the state
of Idaho is presented and preliminary results of the data mining
and knowledge discovery process using the KDLC are
presented. ArcView GIS system allowed us to visualize the
knowledge from KDLC onto the geographic regions of the
Idaho property. The significance of the knowledge
visualization process in analyzing the classifications and
learned rules has been empirically verified in KDLC.

2. KNOWLEDGE DISCOVERY IN DATABASES
PROCESS MODEL

This section provides an introduction to the methods,
processes, and methodologies being developed. In particular,
we believe that a Knowledge Discovery Life Cycle is needed to
allow domain experts and knowledge engineers to work
together to harvest truly breakthrough knowledge for large
collections of data.

2.1. Knowledge Discovery Life Cycle Model

The developed methodology for data mining and knowledge
discovery, called the Knowledge Discovery Life Cycle
(KDLC), is a closed-loop iterative process model consisting of
six major activities as shown in Figure 1. These activities are
explained in section 2.2. Note that each activity may access
multiple types of data and knowledge stored in a locally-
curated Information Repository, distributed heterogeneous on-
line databases, data warehouses, and external sources that may
provide in situ measurements, etc.

2.2. KDLC Activities

This section illustrates a description of the various activities
that comprise the KDLC. Each activity is important to the
success of a data mining and knowledge discovery session.

• Plan for Learning: In order to actually discover
knowledge, one must plan a set of experiments and
formulate a set of hypotheses. The data must also be
prepared for the data mining and discovery process. This
involves the cleansing of data, ensuring the quality of the
data, integrating data from multiple sources, etc.

• Generate and Test Hypothesis: This activity involves
exploratory analysis, concept formulation, pattern
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definition, and template specification via user queries.
This allows hypotheses to be tested by actually analyzing
the data.

• Discover Knowledge: In this phase learning algorithms
are selected and tailored for the learning task. These are
used to discover knowledge and to transform it into
human-understandable structures such as rules and
decision trees.
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Figure 1. The Knowledge Discovery Life Cycle Model

• Determine Knowledge Relevancy: Here the discovered
knowledge is assessed in terms of its relevancy, coverage
of test cases, and usefulness for the problem at hand.
Knowledge visualization, explanation, and validation are
performed in this phase.

• Evolve Knowledge/Data: Once discovered knowledge is
accepted into the Information Repository, it will have
possible impacts on the current database schema, on the
information contained in the data warehouse, and on the
knowledge base. This activity is concerned with the
evolution of the combined data/knowledge bases. Also,
the knowledge lineage, or derivation of the knowledge, is
important because the knowledge was “discovered” from
specific versions of data, domain knowledge, learning
algorithms, etc. This meta-information must also be stored
and maintained in the information repository.

• Critique by a Panel of Experts: In order to assess the
true meaning of a relevance of discovered patterns and
rules, these must be examined by a panel of experts who
confer with the Knowledge Engineers performing the
actual experiments and running the learning and
classification algorithms. Without this ongoing feedback
from experts, the engineers will not have enough
information to obtain truly breakthrough and valuable
knowledge.

3. MULTISTRATEGY APPROACHES TO
LEARNING AND DISCOVERY

The following sections present each of learning and knowledge
discovery techniques used as parts of the learning and
knowledge discovery process in KDLC.

3.1. AutoClass: An Unsupervised Bayesian Classifier

AutoClass is an unsupervised Bayesian classification system
that looks for a maximum posterior probability classification
[1]. The system infers classes based on Bayesian statistics,
deriving a belief network via probability theory.
The idea of accumulating and applying auxiliary evidence here
can be mapped into the constructive induction mechanism that
employs a new attribute, which summarizes the data patterns.
The new attribute’s degree of belief is very high because it is
generated from the best model of Bayesian classification.
Therefore, this new attribute can potentially reorganize and
improve the knowledge representation space. The theory of
how Bayesian learning is applied in AutoClass, summarized
from [3], is described below.
Let E denote a set of evidence and H a set of possible
hypotheses that can conceptualize a set of combinations in E.
Assume that the sets of possible evidence E and possible
hypotheses H are mutually exclusive power sets. P(ab|cd)
represents a real number probability describing a degree of
belief in the conjunction of propositions a and b conditioned on
the assumption that the given propositions c and d are true. Let
π(H|E) denote a posterior probability describing a belief in H
after observing evidence E. Let L(E|H) denote a likelihood
containing a theory of how likely it would be to see each
possible evidence combination E in each possible set of
hypotheses H. Beliefs are non-negative (0 ≤ P(a|b) ≤ 1) and
normalized (∑Hπ(H) = 1 and ∑EL(E|H) = 1). The combination
of likelihood and priors produces a joint probability J(EH) ≡
L(E|H)π(H) of both E and H. Bayes’s rule shows how beliefs
should change when evidence is obtained by normalizing the
joint probability.
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A possible set of hypotheses H with an associated likelihood
function in any given situation indicates what evidence we
expect to observe when the chosen set of hypotheses is true. A
set of prior probabilities corresponding to this set of hypotheses
should be obtained with a set of evidence. Bayes’s rule then
specifies the appropriate posterior beliefs about the hypothesis.
These posterior probabilities and a utility over hypotheses,
U(H), which describes preferences for each individual
hypothesis, can thus be combined to obtain the maximum
expected utility:

EU A U H H EA
H

( ) ( ) ( | )= ∑ π

AutoClass discovers various kinds of knowledge including
classifications and causal mechanisms between cases.

3.2. AQ15c Inductive Learning System

AQ15c is a C-language reimplementation of AQ15 with
significant performance improvement and dynamic allocation
of representation spaces. The AQ family of inductive learning
programs implements the STAR method of inductive learning.
AQ15c learns decision rules for a given set of decision classes
from examples. When learning rules, AQ15c uses 1)
background knowledge in the form of rules (input hypotheses),
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2) the definition of descriptors and their types and 3) a rule
preference criterion that evaluates competing candidate
hypotheses. Each training example characterizes an object, and
its class label specifies the correct decision associated with that
object. The generated decision rules are expressed as symbolic
descriptions involving relations between objects’ attribute
values. The program performs a heuristic search through a
space of logical expressions, until it finds a decision rule that
best satisfies the preference criterion while covering all positive
examples, but no negative examples. Each decision rule is
described by one or more conditions, all of which must be met
for the rule to apply. A condition is a relational statement. A
rule is a conjunction of conditions. A hypothesis is a
disjunction of rules that together describe a concept. A
hypothesis is satisfied if any of its rules are satisfied, while a
rule is satisfied if all of its conditions are satisfied. A condition
is satisfied if the term takes one of the values in the reference.

3.3. A Multistrategy Knowledge Discovery Approach

This section motivates the methodology and approach used in
this study. The concept of constructive induction is introduced
to show that a transformation of the problem's representation
space may lead to more efficient and effective data mining and
KDD results. The KDLC uses a multistrategy knowledge
discovery  approach  that  combines   unsupervised   Bayesian
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Figure 2. General Structure of KDLC Multistrategy Data
Mining and Knowledge Discovery Approach

classification with supervised inductive learning. Figure 2
shows the general structure of the KDLC approach. KDLC can
be applied to two different goals. First, AutoClass provides
classifications that help the user generate “expert knowledge”
for a potential target concept when a data set without
predefined classifications is given to the supervised inductive
learning system. The inductive learning system AQ15c learns
the concept descriptions of these classifications (step 3 in Fig.
2). Second, when the data set is already divided into classes,
KDLC repeatedly searches for the best classifications using
AutoClass, then uses the best one for creating and modifying
more suitable and meaningful knowledge representation spaces.
Figure 3 shows the constructive induction process in which a
new attribute is created for training and testing. In the first
phase, a new attribute, in which the values are class labels
generated by AutoClass, is added to the data table under the
name of CA (Step 1 & 2 in Fig. 2). Note that one of the
attributes provided to AutoClass is the original target concept C
(Fig. 3-a). However, C is not included when we are dealing
with the testing data set (Fig. 3-b) since the system is not
supposed to know the given class. The modified data table
generated by this phase, which now includes CA, is used by
AQ15c to learn the new concept description for C. In other
words, the concept description of the original classification is
learned from the modified knowledge representation space.
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where, vnm: a value of attribute xm of nth example

c1 ≤ C ≤ ck   : C is a Target Concept Attribute

k is the # of target concepts.

k1 ≤ CA ≤ kj: CA is a classification label generated by AutoClass

j is the # of classifications.

Figure 3. Creating a New Attribute for a) Training and b)
Testing Data Set using AutoClass.

The only change is the augmentation of the table with the new
attribute. It is at this time that a separate AQ15c run generates
the concept descriptions for the classes represented by CA.
In the second phase, the testing data set, an unseen data set
with the original concept attribute C containing the value “?”
(don’t care) for all examples, is input to the AutoClass
classifier trained in the first phase (see Figure 3b). By not
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providing the original classifications, the original properties of
the testing data set can be preserved and AutoClass’s ability to
correctly classify previously unseen examples can be verified.
The technique of constructing classification labels is based on
constructive induction methodology [13].
The improvement of the knowledge representation space can
potentially allow us to address large, complicated data sets not
recognized well by a supervised inductive learner alone, by
having an unsupervised Bayesian classifier as an oracle. Then
the robust supervised inductive learner learns the target concept
descriptions, providing clear, understandable rules describing
these classes. Thus, the system takes advantage of the strengths
of its component subsystems.

4. KDLC DATA MINING AND KNOWLEDGE
DISCOVERY CASE STUDY

The following sections present the preliminary results achieved
by applying KDLC to Idaho precision agriculture data.

4.1. Idaho Precision Agriculture Data Description

As described in Table 1, the data contains a total of 500
examples with 62 attributes. All of the attributes have
“continuous” numeric values except the “yield” attribute. Basic
interpretations of each attribute are as follows:
• CAX: Amount of Calcium in soil. X takes values 4, 7, and

10 meaning the soil was sampled in April, July and
October.

• CEC, CU, EL, FE, K, MG, MN, N, NA, OM, ZN, ORN,
P, PH, S, SA: soil nutrient values as a floating point and
were sampled from the small square of soil in the same
way. Most of these are chemical names (eg. FE = Iron, CU
= Copper, K = Potassium), others are nutrients (eg. EL =
excess lime, OM = organic matter, ON = organic nitrogen,
SA = salts).

• ELEV: elevation
• Yield: amount of crop produced by that square of ground.

Since we did not receive enough guidance from the
domain experts on how to scale this class attribute, we
scaled it by standard deviations from 0 to 6.

The Range denotes the interval within which attribute values
fall, and the Lvl (Levels) column denotes the number of distinct
values found for a given attribute.

4.2. Experimental Results

In our experiment, the unsupervised Bayesian classification
system, AutoClass discovered 10 classes from the Idaho data
(500 data samples for 1996). The supervised inductive rule
learning system, AQ15 was then used to learn rule descriptions
of each class.
We note that the combination of AutoClass unsupervised
learning coupled with supervised learning using AQ15
provided some very interesting results. AutoClass found 10
classes of interest and then AQ was able to find succinct rules
to characterize each cluster in terms of important variables
associated with farm soil nutrients’ measurements.

class_0-outhypo
1…[ca_4=5.67..7.38] [el_10=0..0.13] [mn_4=21.73..31.5]
      [mn_10=11.33..41.77] [n_4=6.85..13.28] [n_10=3..9.37]
      [p_7=17.58..26.99] [p_10=18.48..25.99] [ph_10=5.4..6.54]
      [s_7=1..24.73]   (t:119, u:90)
2…[ca_4=6.61..7.6] [n_7=13.43..20.03]   (t:32, u:3)
class_1-outhypo
1…[cec_10=8.26..10.09] [k_7=130.54..175.23]
      [n_4=6.85..12.39] [n_10=6.78..26.32]   (t:77, u:77)
class_2-outhypo
1…[cu_7=0.93..1.07] [k_10=75.11..190.12]
      [mn_4=21.12..39.96] [n_4=12.39..21]   (t:76, u:76)
class_3-outhypo
1…[ca_10=4.66..5.4] [cec_4=9.07..9.54] [zn_4=1.41..1.6]
      (t:45, u:45)
class_4-outhypo
1…[ca_10=4.67..5.3] [cec_10=7.5..8.73] [om_7=2.19..2.32]
      [p_4=19.31..21.62]   (t:42, u:42)
class_5-outhypo
1…[ca_7=3.5..4.75] [ca_10=5.87..7.49] [cec_4=9.71..10.17]
      (t:33, u:33)
class_6-outhypo
1…[ca_7=4.67..5.87] [k_7=104.23..132.17]
      [mn_10=15.94..22.38] [n_4=6.85..11.94]   (t:33, u:33)
class_7-outhypo
1…[ca_4=4.9..6.13] [fe_7=65.7..76.15]   (t:27, u:27)
class_8-outhypo
1…[ca_10=5.28..5.95] [mn_4=8..21.12]   (t:24, u:24)
class_9-outhypo
1…[ca_4=5.26..6.59] [cu_7=0.92..0.97] [el_10=0.004..0.6]
      [zn_4=0.7..1.42]   (t:21, u:21)

Figure 4. Learned Rules and Classes

For example, Class 0 was characterized by two rules, while
each of the other nine classes was characterized by exactly one
rule. We note also that the total (t) number of instances and the
unique (u) number of instances covered by a rule are identical
for classes 1 through 9. In an experiment involving the classes
discovered in Figure 4, we notice that each class has varying
values for the six values of the YIELD attribute. The rules for
YIELD classes 0 – 6, using constructive induction (the class
number 0 - 9 is used as a variable) on AutoClass clusters,
generated some interesting explanations (the actual rules
learned are not shown here but brief explanations are
following). For example, the rules for yield_6-outhypo captured
the Classes from 0 to 5, which cover most of the highest yield
regions. One of its rules contained CA_7 and EL_10 attributes
from Class 6 and Class 9 whose values overlap with other
Classes from 0 to 5. In other words, this rule indicates that the
Class 6 and Class 9 also cover the parts of the highest yield
regions. However, the yield_6-outhypo rules completely
exclude Class 7 and Class 8 without having any common
attributes used to characterize the rules. It is also very
interesting to note that the attributes CEC_4, CU_4, FE_10,
MN_7, S_4, and ELEV are never used to depict the yield_6
region, which is scattered over the original yield map. Based on
this analysis for each of rules learned, we have noticed that the
rules are described with only those attributes that can
discriminate the each of yield classes. It is also noticeable that
the complexes in yield rules including class labels consisted of
sets of disjoint attributes that employed the background
theories of AutoClass classification using the most influential
set of attributes and AQ’s discriminant inductive rule
generation.
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Table 1. Description of Attribute Values for Idaho Data

# Name Range Lvl # Name Range Lvl # Name Range Lvl
1 ca_4 4.9 - 7.6 183 22 mn_4 8 - 39.96 408 43 s_4 3 - 15.99 353
2 ca_7 3.5 - 9.04 196 23 mn_7 4.59 - 35.23 382 44 s_7 1 - 39.99 446
3 ca_10 4.5 - 7.49 175 24 mn_10 5.21 - 41.77 401 45 s_10 4 - 11.99 330
4 cec_4 8.6 - 11.3 187 25 n_4 6.85 - 21 314 46 sa_4 0.5 - 0.8 31
5 cec_7 7.6 - 10.9 158 26 n_7 7.01 - 25.99 392 47 sa_7 0 - 1.1 101
6 cec_10 7.5 - 10.09 189 27 n_10 3 - 34.93 334 48 sa_10 0.5 - 1.1 57
7 cu_4 0.8 - 1.1 31 28 na_4 0.1 - 0.2 11 49 zn_4 0.7 - 2.3 120
8 cu_7 0.9 - 1.1 21 29 na_7 0.2 - 0.3 11 50 zn_7 1.3 - 2.1 73
9 cu_10 0.5 - 1.39 76 30 na_10 0.2 1 51 zn_10 0.7 - 1.69 81
10 el_4 0 1 31 om_4 1.75 - 2.35 51 52 elev 1384 - 1653 48
11 el_7 0 - 0.3 38 32 om_7 1.85 - 2.62 62 53 mnt_4 30.97 1
12 el_10 0 - 0.6 48 33 om_10 1.8 - 2.59 75 54 mxt_4 51.776 1
13 fe_4 30.3 - 74.13 426 34 orn_4 40 - 44.99 216 55 pp_4 0.0441 1
14 fe_7 13.83 - 76.15 457 35 orn_7 40 - 48.45 301 56 mnt_7 47.6283871 1
15 fe_10 17.06 - 74.16 458 36 orn_10 40 - 49.96 300 57 mxt_7 80.69806452 1
16 k_4 125.08 - 374.55 473 37 p_4 14.02 - 23.97 334 58 pp_7 0.025403226 1
17 k_7 95.03 - 294.67 467 38 p_7 15 - 26.99 353 59 mnt_10 26.53323 1
18 k_10 75.11 - 404.74 477 39 p_10 16 - 25.99 325 60 mxt_10 53.53 1
19 mg_4 1.3 - 2.09 60 40 ph_4 5.5 - 6.3 64 61 pp_10 0.0312 1
20 mg_7 1.3 - 2 64 41 ph_7 5 - 7.77 152 62 yield 0 - 6 7
21 mg_10 1.2 - 1.8 55 42 ph_10 5.4 - 7.49 139

4.3. Graphical Depiction of Learning Experiments

In this section we present the visualizations obtained from the
ArcView System showing the geographic regions of the Idaho
property from which the data sets were obtained.  The images
correspond to the classes discovered by the AutoClass program.
The complexes (conditions) of the AQ rules characterizing each
class were used to query the ArcView database of the entire
Idaho data set, and the various classes were plotted on the map.
We note that the classes 0, 1 and 2 when plotted over the
background constitute contiguous regions on the farm, and
each class has been characterized by relatively simple rules as
shown in Figure 4. We note that these rules include
measurements of variables from the months of April, July and
October. Here it would be appropriate to call in the “panel of
experts” to provide expert advice on how best to pursue the
inductive learning part of the KDLC. Clearly, the visualization
of knowledge is crucial to the KDLC and the use of the
ArcView GIS has allowed us to visualize the classes. The
following Figures 5 - 7 show screen shots for various classes
discovered by the AutoClass Program. Only Classes 0, 1, and 2
from Figure 4 have been presented due to the lack of space.

5. CONCLUSIONS

This paper has presented both a methodology and an associated
knowledge discovery life cycle model, called the KDLC, for
data mining and knowledge discovery in large, multiple and
heterogeneous databases. A key contribution of this approach is
the integration of these two types of learning into a
multistrategy KDD approach, combining unsupervised
learning, such as Bayesian or statistical classification, with
supervised inductive learning.

Figure 5. The ArcView GIS Query Form

The particular approach begins by analyzing large data sets
using an unsupervised Bayesian classification system,
AutoClass. AutoClass discovers interesting taxonomies from
databases, and these taxonomic class representations can be
represented as new attributes in an expanded representation
space via constructive induction. The inductive learning
system, AQ15c, can then be used to “learn” useful concepts,
relationships, and rules that characterize knowledge in the data
space. We have also performed experiments with statistical
classification K-means Clustering and Ward Clustering [12],
but lack of time did not permit a thorough analysis of the
results. A case study dealing with “crop yields” for a farm in
the state of Idaho is presented and preliminary results of the
KDD process with the KDLC are discussed.
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Figure 6. Background and Yield Map

Figure 7. Classes 0, 1, and 2, Yield and Background

Our experiments have shown that a multistrategy KDD
approach combining unsupervised and supervised learning
could yield interesting results. In particular, we have shown
that knowledge visualization is indeed crucial to helping both
users and knowledge engineers to understand and analyze the
rules and concepts that have been discovered. Additionally, the
KDLC envisions a “panel of experts” to comment of
discovered knowledge and to provide advice for future learning
experiments. We believe these techniques, when combined
with the Knowledge Discovery Life Cycle, can form the basis
of a robust set of tools for decision support, data mining,
knowledge discovery, knowledge visualization, and
knowledge/data evolution. There is a need to couple the
learning approaches with advanced database technology to
handle very large databases [14]. Future research should also
focus on the use of intelligent software [6] for the negotiation,
retrieval, and data mining from high-quality, reliable
information sources.
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