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ABSTRACT

In order to obtain potentially interesting patterns and relations
from large, distributed, heterogeneous databases, it is essential
to employ an intelligent and automated KDD (Knowledge
Discovery in Databases) process. One of the most important
methodologies is an integration of diverse learning strategies
that cooperatively performs a variety of techniques and
achieves high quality knowledge. AqBC is a multistrategy
knowledge discovery approach that combines supervised
inductive learning and unsupervised Bayesian classification.
This study investigates creating a more suitable knowledge
representation space with the aid of unsupervised Bayesian
classification system, AutoClass. AutoClass discovers
interesting patterns from databases. Via constructive induction,
these patterns modify the knowledge representation space so
that the robust inductive learning system, AQ15c, learns useful
concept descriptions of a taxonomy. AqBC applied to two
different sample problems yields not only simple but also
meaningful knowledge due to the systems that implement its
parent approaches. AqBC’s good performance appears to be
due to its integration of reliable unsupervised Bayesian
classification, constructive induction and rule induction, and
not to the presence of any component alone.

1.  INTRODUCTION

The explosive growth of large scale databases far exceeds
our ability to analyze them, requiring a new approach for
intelligent and automated knowledge discovery [4]. We present
AqBC [7], a multistrategy knowledge discovery approach to
concept learning. AqBC extracts new knowledge, determines
meaningful descriptions and applies the newly acquired
knowledge in supervised learning. These descriptions and
knowledge grow out of patterns identified by AqBC. A
clustering method using unsupervised Bayesian classification,
generates the newly organized knowledge, while a supervised
inductive rule learning system generalizes the descriptions and
expresses them in variable valued logic. These new concepts
expand the knowledge representation space for the supervised
inductive learning system.

The system employs constructive induction to create and
enhance the knowledge representation space with the aid of the
unsupervised Bayesian classifier, AutoClass [2]. AutoClass
provides a maximum posterior probability grouping objects into
classes. The constructed classes define abstract concepts, with
descriptions learned from class members using the inductive
learning system, AQ15c [13]. The abstract concept descriptions
are then used to improve and expand the original representation
space. This expanded representation space serves as a final
setting for supervised concept learning of any attribute from the
original examples by employing AQ15c. The multiple stage
concept learning has the following properties:

• The task of inferring a set of classes and class descriptions
that best fit and explain a given data set is placed on a
firm theoretical foundation using Bayesian statistics.

• The abstract concept descriptions learned in the first stage
can illustrate and associate the corresponding concept
descriptions learned in the second stage, which generates a
set of simple descriptive rules. This way, the hierarchical
hypotheses structures discovered from the nested
classifications provide valuable information that cannot be
obtained from either system alone.

The first MONK problem, MONK1, [12] and US census
data have been used for experimentation. The diagrammatic
visualization system, DIAV [15] graphically interprets the
knowledge representation spaces and shows the changes in the
representation space caused by constructive induction. In this
paper, we show that the newly created knowledge facilitates
classification and, in turn, problem solving that employs
classification or pattern recognition in large databases.

2.  THE SIGNIFICANCE OF IMPROVING THE
KNOWLEDGE REPRESENTATION SPACE

Constructive Induction (CI) is a concept proposed in the field
of inductive concept learning [8] to solve learning problems in
which the original representation space is inadequate for the
problem at hand and needs to be improved in order to correctly
formulate the knowledge to be learned. In other words,
constructive induction hypothesizes new knowledge using a
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search process. In our study, we search for the best
representation space transformation by applying the
unsupervised Bayesian classifier, AutoClass.

CI is based on the idea that the quality of the knowledge
representation space is the most significant factor in concept
learning. If the representation space is of high quality, i.e. the
chosen attributes/descriptive terms are highly relevant to the
problem at hand, learning will be relatively easy and will likely
produce easily understood hypotheses with high predictive
accuracy. If the quality of the representation space is low, (i.e.
the attributes are less relevant to the problem) learning will be
complex and no method may be able to produce good
hypotheses. CI searches for patterns in data, learned
hypotheses, and knowledge from experts, using them to create a
new knowledge representation space [14].

In order to find an appropriate representation space,
clustering is an important way of summarizing and explaining
data. A clustering system accepts a set of object descriptions
(events, observations, facts) and produces a classification
scheme over the observations. This system does not require an
“oracle” to preclassify objects, but instead uses an evaluation
function to discover classes that provide “good” conceptual
descriptions. In our AqBC approach, the unsupervised Bayesian
classifier, AutoClass, plays the clustering role and searches for
the best model or classifications. Its evaluation function is
based on Bayesian statistics. Once AutoClass finds the best
model, AqBC creates a new attribute called class and augments
the original data set with it. This new set of attributes is then
passed to the second phase, which employs the supervised
inductive learning system, AQ15c. The supervised learning
should benefit from this new knowledge representation space
for learning target concepts and produce more accurate
descriptions of the target concepts.

To prove the quality of effectiveness of this approach and
illustrate its properties, we applied AqBC to MONK1. The
original representation space with the training examples
denoted by “+” and “-” is shown in Figure 2A using DIAV.

Like most real world problems, the initial representation
space is very disordered and ill-structured. In the improved
representation space (Figure 2B), the examples representing
the target concept are better ordered and therefore easier to
generalize. The positive examples are properly grouped in the
middle value of the constructed attribute, while the negative
ones group together in the first and last values. The descriptive
rule sets learned by the AqBC approach are shown in Figure 1.

In this case, x7 is a new attribute that represents the clusters,
class0, class1 and class2, created by AutoClass. This new
attribute augments the original attribute set and significantly
changes the shape of the representation space. The resulting
space can be divided by a single three-valued attribute, so the
rules describing the concepts are trivial.

The combined approach successfully captures these
meaningful subconcepts and thus successfully solves the
problem (100% accuracy on both the training and test sets).
Since most real world problems do not provide an “oracle” to
guide the learning task, an unsupervised classifier is an
attractive device to modify the representation space. We will

discuss in later sections how AqBC addresses this issue in an
application to US census data.

Positive-outhypo

1 [x7=2]

Where,
class0 (x7=2) is:
1 [x5=1]            (t:29, u:21)
2 [x1=3] & [x2=3]   (t:17, u:13)
3 [x1=2] & [x2=2]   (t:15, u:12)
4 [x1=1] & [x2=1]   (t:9, u:8)

Negative-outhypo

1 [x7=1,3]

Where,
class1 (x7=1) is:
1 [x1=2..3] & [x2=1] & [x5=2..4] (t:20, u:20)
2 [x1=2] & [x2=3] & [x5=2..4]    (t:6, u:6)

class2 [x7=3] is:
1 [x1=1] & [x2=2..3] & [x5=2..4] (t:31, u:31)
2 [x1=3] & [x2=2] & [x5=2..4]    (t:5, u:5)

t is the total number of examples covered by a rule
u is the number of examples uniquely covered by the rule

Figure 1. Rules learned by AqBC approach (MONK1 problem)

3.  AQBC: A MULTISTRATEGY APPROACH FOR
CONSTRUCTIVE INDUCTION-BASED

KNOWLEDGE DISCOVERY

AQ15c Inductive Learning System
AQ15c [13] is a C-language reimplementation of AQ15 [11]
with significant performance improvement and dynamic
allocation of representation spaces. AQ-family of inductive
learning programs implements the STAR method of inductive
learning [9].

AQ15c learns decision rules for a given set of decision
classes from examples. When learning rules, AQ15c uses 1)
background knowledge in the form of rules (input hypotheses),
2) the definition of descriptors and their types and 3) a rule
preference criterion that evaluates competing candidate
hypotheses. Each training example characterizes an object, and
its class label specifies the correct decision associated with that
object. The generated decision rules are expressed as symbolic
descriptions involving relations between objects’ attribute
values. The program performs a heuristic search through a
space of logical expressions, until it finds a decision rule that
best satisfies the preference criterion while covering all
positive examples, but no negative examples.

Each decision rule is described by one or more conditions,
all of which must be met for the rule to apply. A condition  is a
relational statement. A rule is a conjunction of conditions. A
hypothesis is a disjunction of rules that together describe a
concept.

The following is an example of a hypothesis consisting of
two rules:
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  Flag-outhypo

  1 [color = red, white, blue] & [stripes = 13]
& [stars = 50]

  2 [color = red, white, blue] & [stripes = 3]

A hypothesis is satisfied if any of its rules are satisfied,
while a rule is satisfied if all of its conditions are satisfied. A
condition is satisfied if the term takes one of the values in the
reference. The hypothesis shown in the above example can be
interpreted as follows: An object is a flag if: its color is red,
white, or blue, and it has 13 stripes and 50 stars, OR its color
is red, white, or blue, and it has 3 stripes.

Figure 2. Diagrammatic visualization of the first MONK problem
representation space: A) the initial representation space; B) the improved
representation space due to the AqBC approach

AutoClass: An Unsupervised Bayesian Classifier
AutoClass is an unsupervised Bayesian classification system
that looks for a maximum posterior probability classification.
The system infers classes based on Bayesian statistics, deriving
a belief network via probability theory.

The idea of accumulating and applying auxiliary evidence
here can be mapped into the constructive induction mechanism
that employs a new attribute which summarizes the data
patterns. The new attribute’s degree of belief is very high
because it is generated from the best model of Bayesian
classification. Therefore, this new attribute can potentially
reorganize and improve the knowledge representation space.
The theory of how Bayesian learning is applied in AutoClass is
described in [2], [5].

The AqBC Multistrategy Learning Methodology
AqBC is a multistrategy knowledge discovery approach that
combines unsupervised Bayesian classification with supervised
inductive learning. Figure 3 shows the general structure of the
AqBC approach. AqBC can be applied to two different goals.
First, AutoClass provides classifications that help the user
generate “expert knowledge” for a potential target concept
when a data set without predefined classifications is given to
the supervised inductive learning system. The inductive
learning system AQ15c learns the concept descriptions of these
classifications (step3 in Fig. 3). Second, when the data set is
already divided into classes, AqBC repeatedly searches for the
best classifications using AutoClass, then uses the best one for
creating and modifying more suitable and meaningful
knowledge representation spaces. Figure 4 shows the
constructive induction process in which a new attribute is
created for training and testing. In the first phase, a new
attribute, in which the values are class labels generated by
AutoClass, is added to the data table under the name of CA
(Step 1 & 2 in Fig. 3).

Input: Examples &
Definitions

of Attributes

Split Examples
into T1 & T2

Create a New Attribute CA
from T1

Learn Concept Descriptions
of CA from T1

Create a New Attribute CA
from T2

Final Rule Learning
from T1 & T2 by AQ15c

Output: Rules &
Definitions of

Constructed Attribute CAT1: Training Set
T2: Testing Set

CA: New attribute with values that are classes generated by AutoClass
      In step 1, concept attribute (C) is included in T1. In step 2, C is not included in T2.

AQ15c

Add CA to T1

Add CA to T2

1

2

3

4

 Figure 3. General structure of AqBC approach
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Note that one of the attributes provided to AutoClass is the
original target concept C (Fig. 4-a). However, C is not included
when we are dealing with the testing data set (Fig. 4-b) since
the system is not supposed to know the given class.

e1
:
:
:
:
en

x1   x2  .  .  .   xm C CA

C

t1
t2
:
:
:
t v

?
?
:
:
:
?

CA

AutoClass
Clustering

AutoClass
Prediction

a) Classification Learning

b) Classification Testing

CA: New attribute with values that are classes generated by AutoClass
C: Concept Attribute

v11 v12 . . .  v1m
:       :             :
:       :             :
:       :             :
:       :             :
vn1 vn2 . . .  vnm

c1
:
:
:
:
ck

v11 v12 . . .  v1m
:       :             :
:       :             :
:       :             :
:       :             :
vv1 vv2 . . .  vvm

x1   x2  .  .  .   xm

e1
:
:
:
:
en

x1   x2  .  .  .   xm

v11 v12 . . .  v1m
:       :             :
:       :             :
:       :             :
:       :             :
vn1 vn2 . . .  vnm

t1
t2
:
:
:
t v

x1   x2  .  .  .   xm

k1
:
:
:
:
kj

k1
:
:
:
:
kj

v11 v12 . . .  v1m
:       :             :
:       :             :
:       :             :
:       :             :
vv1 vv2 . . .  vvm

Figure 4. Creating a new attribute for a)training and b)testing data set by
use of AutoClass, where,
               vnm              : a value of attribute xm of nth example
               c1 ≤ C ≤ ck  : C is a Target Concept Attribute.
                                       k is the # of target concepts.
               k1 ≤ CA ≤ kj: CA is a classification label generated by AutoClass
                                        j is the # of classifications.

The modified data table generated by this phase, which now
includes CA, is used by AQ15c to learn the new concept
description for C. In other words, the concept description of the
original classification is learned from the modified knowledge
representation space. The only change is the augmentation of
the table with the new attribute. It is at this time that a separate
AQ15c run generates the concept descriptions for the classes
represented by CA.

In the second phase, the testing data set, an unseen data set
with the original concept attribute C containing the value “?”
(don’t care) for all examples, is input to the AutoClass
classifier trained in the first phase (see Figure 4b).

By not providing the original classifications, the original
properties of the testing data set can be preserved and
AutoClass’s ability to correctly classify previously unseen
examples can be verified. The technique of constructing
classification labels is based on previous constructive induction
methodology [14].

The improvement of the knowledge representation space is
already demonstrated with the MONK1 problem in the
previous section. Such an approach can potentially allow us to
address large, complicated data sets not recognized well by a
supervised inductive learner alone, by having an unsupervised
Bayesian classifier as an oracle. Then the robust supervised
inductive learner learns the target concept descriptions,
providing clear, understandable rules describing these classes.
Thus, the system takes advantage of the strengths of its
component subsystems.

4.  AN EXPERIMENTAL APPLICATION TO THE
US CENSUS DATA

US Census Data

The demographics database (Table 1) is adapted from US
census data on all US cities with a 1990 population of over
200,000 residents. 77 records containing the above 36
attributes were used for the experiments.

The sizes of the domains of these attributes vary widely.
Some are binary, such as the last four attributes; others have as
many as 70 different linear values. Most of the attributes have
10-20 values. The dataset thus introduces a wide variety of
problems for any system that must deal with it, particularly in
view of the small number of examples. Given such a dataset, an
important problem is how to organize it in such a way so that
useful knowledge can be extracted from it.

Learning Concept Descriptions from AutoClass
classifications

AQ15c learns the concept description of the classifications
obtained from the AutoClass (attribute CA), as described
earlier. The following rules describe the two values of the CA
attribute, representing the two concepts discovered by
AutoClass. Note that, for all rules presented below, the values
have been mapped back to the original data from the
normalized values presented to the system.

Table 1. Definitions of attributes
1.  % Asian Residents

2.  % Black

3.  Population Density

4.  % Elderly Residents

5.  % Foreign Residents

6.  % Residents speaking

      foreign language

7.  Population Growth

8.  Land Area

9.  Population

10.  Infant Mortality

11.  Crime Rate

12.  % Single Dwellers

13.  % Single Parents

14.  % Hispanic Residents

15.  July Temperature (median)

16.  Precipitation (annual,
inches)

17.  % Jobs held are in
manufacturing

18.  Change in labor force from
1980

19.  % Females in workplace

20.  % Commuters using public
transit

21.  Unemployment %

22.  Rent

23.  % Dwellings that are
condominiums

24.  Home value

25.  % Population who rent

26.  Poverty rate

27.  % Housing units built
before 1939

28.  Income

29.  % Residents on public
assistance

30.  % of children in elementary
or secondary school

31.  % Adults over 55

32.  % Holding bachelors
degrees

33.  Has major league baseball
team

34.  Has NFL football team

35.  Has NBA basketball team

36.  Is a state capital
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class0-outhypo

1   [black = 4..76%] & [elderly = 4..18%] &
    [pop_growth < 32%] & [population > 385,000]
    (t:41, u:26)
2   [manufacturing_jobs = 7..27%] & [rent <
    $475/mo] & [poverty = 9..17%]   (t:20, u:5)

class0 appears to represent cities with moderate to large
populations and without explosive growth OR with low average
monthly rent and moderate poverty rates. When we look at the
actual cities that fall into this class, we see most are cities that
are very large, with stable or declining populations –
particularly those of the Eastern seaboard, the old South and
the Rust Belt. Of the 32 largest cities in the US, 30 fall into
this class. The only exceptions are the high tech, rapidly
growing San Jose, and El Paso, which is also growing
extremely rapidly, due primarily to Hispanic immigration.

class1-outhypo

1   [foreign_speak = 4..70%] &
    [land_area < 242 sq miles] &
    [renters = 0..21%] & [old_housing = 0..19%]
    & [income = $22K..46K]       (t:22, u:19)
2   [population = 326K..385K] &
    [infant_mortality = 6..18] &
    [renters = 6..40%] & [state_capital = NO]
    (t:11, u:8)
3   [black = 43%] & [foreign < 19%]   (t:1, u:1)

class1 appears to represent small cities with relatively low
rental rates or cities with moderately small populations that
aren’t state capitals.  Most of these cities are either in the Sun
Belt or are small cities outside of the old South and Rust Belt.

Using AqBC for Knowledge Discovery

AQ15c learns the abstract concept descriptions of the given
classifications from AutoClass in the first phase. Now we
augment the original knowledge representation space with the
“class” label attribute, allowing AQ to learn new knowledge
which was difficult to extract from the original representation
space. We can now choose our target concepts from among any
of the system attributes. In this case, we choose two concepts
based on the population attribute, where these concepts, large
cities and moderately sized cities, are represented by two
classes. The first class is population over 385,000 and the
second class is population from 200,000 to 385,000.

The following experiments use the constructed attribute
from the two class clustering.

population_0-outhypo

1   [black=7..75%] & [foreign = 2..59%] &
    [home_value = 2..32] & [class=0](t:34, u:24)
2   [pop_density > 2250] & [single = 24..31%] &
    [july_temperature = 74..93F] &
    [precipitation < 56] &
    [manufacturing_jobs < 24%] &
    [change_in_labor < 43%] & [renters < 56%]
    (t:14, u:9)

3   [foreign = 4..27%] & [foreign_speak > 1%] &
    [pop_growth < 32%] & [july_temperature =
    0..24F] & [precipitation = 4..43] &
    [change_in_labor > -7%] & [renters < 56%]
    (t:11, u:4)
4   [single_parent = 17%]        (t:1, u:1)

population_1-outhypo

1   [hispanic > 66%] & [manufacturing_jobs =
    6..26%] & [class=1]          (t:21, u:15)
2   [pop_density < 6750] & [land_area < 129] &
    [manufacturing_jobs < 22%] & [unemployment ≠
    very high] & [renters = 41..61%] &
    [holds_bachelors < 28%] & [has_nba_team =
    NO]                          (t:9, u:5)
3   [single = 20..23%]           (t:5, u:1)

The constructed attribute separates large cities from small
ones almost perfectly. As stated above, 30 of the 32 largest
cities (and 34 of the 38 largest cities that fit into population
class 0) are labeled 0 for the constructed attribute “class”. This
greatly simplifies the rule learner’s task for discovering simple
rules representing the target concept “population”.

The Census database has a much larger attribute set than the
MONK1 problem, and its attributes also have a wider range of
values. Because of this, the Census database provides a
somewhat more realistic case study. More than half the
attributes of the database are dropped altogether in the final
rules, while still capturing the target concept. In addition, the
constructed attribute plays a major role in discriminating the
two classes; the class attribute is part of the most powerful
conjunction in each class description. Thus, constructive
induction turns out to be important to understanding the target
concept.

5.  CONCLUSIONS

This paper presents a multistrategy approach for knowledge
discovery that integrates supervised AQ inductive rule learning
with unsupervised Bayesian classification for creating a
meaningful knowledge representation space and discovering
high quality knowledge. The patterns acquired by the Bayesian
classifier make little sense until AQ provides an
understandable descriptive representation that encompasses
new knowledge. In other words, the data and information
presented to AqBC becomes knowledge when the patterns
acquired by the system are realized into understandable
concepts. This new knowledge can then be applied in
organizational decision making.

The AqBC approach uses the methodology of constructive
induction, which modifies and improves the representation
space with the aid of classifications obtained from the
unsupervised Bayesian classifier, AutoClass. This methodology
was applied to the MONK1 problem and a US census dataset.
In the experiments, AqBC constructed new attributes used in
relatively simple, meaningful rules describing the target
concepts. The problems inherent in the nonsymbolic nature of
both the Bayesian and the distance based statistical techniques
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are often mitigated by applying AQ to learn descriptive
representations for both the resulting clusters and the target
concepts. This multistrategy approach produces important new
knowledge organization as it creates human-understandable
class descriptions and new attributes that simplify those class
descriptions.

A key result of this research is the generation of a simple,
descriptive taxonomy for a database that can be used for
sensibly partitioning into smaller databases. Another potential
experiment would be to use the taxonomy produced via the
AqBC method to perform supervised classification with many
different decision attributes from the current set rather than just
the population attribute. Other future research will focus on
developing new strategies combining various statistical and
conceptual [10] classification methods for constructing better
knowledge representation spaces from large data sets.

Not only Bayesian classifiers benefit from the use of AQ15c
to learn the descriptive representations of the generated classes.
In addition to the distance-based clustering methods like K-
means centroid & Ward hierarchical clustering, other
subsymbolic systems such as SOFMs [6] and k-NN methods
can be employed as the unsupervised classification engine.
Multiple engines may also be used to perform additional
constructive induction prior to unsupervised classification. For
example, AQ17-DCI [1] and AQ17-HCI [14] construct new
features based on interrelationships among existing ones.

Varying the rule learner based on the application may also
prove productive. If mathematical formulae are desired instead
of conjunctive rules, a system such as ABACUS [3] could be
employed in place of AQ15c. There are still many challenging
real world applications to which this multistrategy approach
could be applied for new knowledge discovery.
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